A Semantic Compositional Network (SCN) is developed for image captioning, in which semantic concepts (i.e., tags) are detected from the image, and the probability of each tag is used to compose the parameters in a long short-term memory (LSTM) network. The SCN extends each weight matrix of the LSTM to an ensemble of tag-dependent weight matrices. The degree to which each member of the ensemble is used to generate an image caption is tied to the image-dependent probability of the corresponding tag. In addition to captioning images, we also extend the SCN to generate captions for video clips. We qualitatively analyze semantic composition in SCNs, and quantitatively evaluate the algorithm on three benchmark datasets: COCO, Flickr30k, and Youtube2Text. Experimental results show that the proposed method significantly outperforms prior state-of-the-art approaches, across multiple evaluation metrics.
We present a biophysically based kinetic model of the cardiac SERCA pump that consolidates a range of experimental data into a consistent and thermodynamically constrained framework. The SERCA model consists of a number of sub-states with partial reactions that are sensitive to Ca(2+) and pH, and to the metabolites MgATP, MgADP, and Pi. Optimization of model parameters to fit experimental data favors a fully cooperative Ca(2+)-binding mechanism and predicts a Ca(2+)/H(+) counter-transport stoichiometry of 2. Moreover, the order of binding of the partial reactions, particularly the binding of MgATP, proves to be a strong determinant of the ability of the model to fit the data. A thermodynamic investigation of the model indicates that the binding of MgATP has a large inhibitory effect on the maximal reverse rate of the pump. The model is suitable for integrating into whole-cell models of cardiac electrophysiology and Ca(2+) dynamics to simulate the effects on the cell of compromised metabolism arising in ischemia and hypoxia.
We present a metabolically regulated model of cardiac active force generation with which we investigate the effects of ischemia on maximum force production. Our model, based on a model of cross-bridge kinetics that was developed by others, reproduces many of the observed effects of MgATP, MgADP, Pi, and H(+) on force development while retaining the force/length/Ca(2+) properties of the original model. We introduce three new parameters to account for the competitive binding of H(+) to the Ca(2+) binding site on troponin C and the binding of MgADP within the cross-bridge cycle. These parameters, along with the Pi and H(+) regulatory steps within the cross-bridge cycle, were constrained using data from the literature and validated using a range of metabolic and sinusoidal length perturbation protocols. The placement of the MgADP binding step between two strongly-bound and force-generating states leads to the emergence of an unexpected effect on the force-MgADP curve, where the trend of the relationship (positive or negative) depends on the concentrations of the other metabolites and [H(+)]. The model is used to investigate the sensitivity of maximum force production to changes in metabolite concentrations during the development of ischemia.
We present an image caption system that addresses new challenges of automatically describing images in the wild. The challenges include high quality caption quality with respect to human judgments, out-of-domain data handling, and low latency required in many applications. Built on top of a state-of-the-art framework, we developed a deep vision model that detects a broad range of visual concepts, an entity recognition model that identifies celebrities and landmarks, and a confidence model for the caption output. Experimental results show that our caption engine outperforms previous state-of-the-art systems significantly on both in-domain dataset (i.e. MS COCO) and out-of-domain datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.