Rapid advancements of computer technologies in recent years made the real-time transferring and integration of high-volume, multisource data at a centralized location a possibility. The Multi-Radar Multi-Sensor (MRMS) system recently implemented at the National Centers for Environmental Prediction demonstrates such capabilities by integrating about 180 operational weather radars from the conterminous United States and Canada into a seamless national 3D radar mosaic with very high spatial (1 km) and temporal (2 min) resolution. The radar data can be integrated with high-resolution numerical weather prediction model data, satellite data, and lightning and rain gauge observations to generate a suite of severe weather and quantitative precipitation estimation (QPE) products. This paper provides an overview of the initial operating capabilities of MRMS QPE products.
[1] Subsurface flow within a single riffle of a low-gradient gravel bed stream was modeled in three dimensions using MODFLOW, a finite difference groundwater flow model. Model simulations showed that exchange flows can only occur in this low-gradient, gaining stream because of a zone of alluvial sediment around the stream that has much higher permeability than the surrounding catchment (K = 10 À4 m s À1 , compared with K = 10 À6 to 10 À8 m s À1 ). The key factors controlling exchange flow within the alluvial zone were identified as the hydraulic conductivity of the alluvium, the hydraulic gradient between upstream and downstream ends of the riffle, and the flux of groundwater entering the alluvium from the sides and beneath. In the study riffle each of these factors changes with season, causing a reversal of flow paths in the alluvium and a reduction in exchange flows from about 0.2-0.5 m 3 d À1 per meter stream length in summer to about 0.008-0.04 m 3 d À1 per meter stream length during fall to spring. The model also revealed that exchange flows are up to twice as strong, but more variable, at the sides of the stream than near the center, and that vertical flow paths beneath the channel are more persistent under the range of conditions modeled than lateral flow paths into the banks.
No abstract
The National Mosaic and Multi-sensor QPE (Quantitative Precipitation Estimation), or “NMQ”, system was initially developed from a joint initiative between the National Oceanic and Atmospheric Administration's National Severe Storms Laboratory, the Federal Aviation Administration's Aviation Weather Research Program, and the Salt River Project. Further development has continued with additional support from the National Weather Service (NWS) Office of Hydrologic Development, the NWS Office of Climate, Water, and Weather Services, and the Central Weather Bureau of Taiwan. The objectives of NMQ research and development (R&D) are 1) to develop a hydrometeorological platform for assimilating different observational networks toward creating high spatial and temporal resolution multisensor QPEs for f lood warnings and water resource management and 2) to develop a seamless high-resolution national 3D grid of radar reflectivity for severe weather detection, data assimilation, numerical weather prediction model verification, and aviation product development. Through about ten years of R&D, a real-time NMQ system has been implemented (http://nmq.ou.edu). Since June 2006, the system has been generating high-resolution 3D reflectivity mosaic grids (31 vertical levels) and a suite of severe weather and QPE products in real-time for the conterminous United States at a 1-km horizontal resolution and 2.5 minute update cycle. The experimental products are provided in real-time to end users ranging from government agencies, universities, research institutes, and the private sector and have been utilized in various meteorological, aviation, and hydrological applications. Further, a number of operational QPE products generated from different sensors (radar, gauge, satellite) and by human experts are ingested in the NMQ system and the experimental products are evaluated against the operational products as well as independent gauge observations in real time. The NMQ is a fully automated system. It facilitates systematic evaluations and advances of hydrometeorological sciences and technologies in a real-time environment and serves as a test bed for rapid science-to-operation infusions. This paper describes scientific components of the NMQ system and presents initial evaluation results and future development plans of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.