Phosphorylation of the α-subunit of initiation factor 2 (eIF2) controls protein synthesis by a conserved mechanism. In metazoa, distinct stress conditions activate different eIF2α kinases (PERK, PKR, GCN2, and HRI) that converge on phosphorylating a unique serine in eIF2α. This collection of signaling pathways is termed the ‘integrated stress response’ (ISR). eIF2α phosphorylation diminishes protein synthesis, while allowing preferential translation of some mRNAs. Starting with a cell-based screen for inhibitors of PERK signaling, we identified a small molecule, named ISRIB, that potently (IC50 = 5 nM) reverses the effects of eIF2α phosphorylation. ISRIB reduces the viability of cells subjected to PERK-activation by chronic endoplasmic reticulum stress. eIF2α phosphorylation is implicated in memory consolidation. Remarkably, ISRIB-treated mice display significant enhancement in spatial and fear-associated learning. Thus, memory consolidation is inherently limited by the ISR, and ISRIB releases this brake. As such, ISRIB promises to contribute to our understanding and treatment of cognitive disorders.DOI: http://dx.doi.org/10.7554/eLife.00498.001
Activation of innate immunity and deposition of blood-derived fibrin in the central nervous system (CNS) occur in autoimmune and neurodegenerative diseases, including multiple sclerosis (MS) and Alzheimer’s disease (AD). However, mechanisms linking blood-brain barrier (BBB) disruption with neurodegeneration are poorly understood, and exploration of fibrin as a therapeutic target has been limited by its beneficial clotting functions. Here we report the generation of monoclonal antibody 5B8 targeted against the cryptic fibrin epitope γ 377–395 to selectively inhibit fibrin-induced inflammation and oxidative stress without interfering with clotting. 5B8 suppressed fibrin-induced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and proinflammatory gene expression. In animal models of MS and AD, 5B8 entered the CNS and bound to parenchymal fibrin, and its therapeutic administration reduced innate immune activation and neurodegeneration. Thus, fibrin-targeting immunotherapy inhibits autoimmune- and amyloid-driven neurotoxicity and may have clinical benefit without globally suppressing innate immunity or interfering with coagulation in diverse neurological diseases.
The ability to screen compounds in a high-throughput manner is essential in the process of small molecule drug discovery. Critical to the success of screening strategies is the proper design of the assay, often implying a compromise between ease/speed and a biologically relevant setting. Leishmaniasis is a major neglected disease with limited therapeutic options. In order to streamline efforts for the design of productive drug screens against Leishmania, we compared the efficiency of two screening methods, one targeting the free living and easily cultured promastigote (insect–infective) stage, the other targeting the clinically relevant but more difficult to culture intra-macrophage amastigote (mammal-infective) stage. Screening of a 909-member library of bioactive compounds against Leishmania donovani revealed 59 hits in the promastigote primary screen and 27 in the intracellular amastigote screen, with 26 hits shared by both screens. This suggested that screening against the promastigote stage, although more suitable for automation, fails to identify all active compounds and leads to numerous false positive hits. Of particular interest was the identification of one compound specific to the infective amastigote stage of the parasite. This compound affects intracellular but not axenic parasites, suggesting a host cell-dependent mechanism of action, opening new avenues for anti-leishmanial chemotherapy.
Oxidative stress is a central part of innate-immune induced neurodegeneration. However, the transcriptomic landscape of the central nervous system (CNS) innate immune cells contributing to oxidative stress is unknown, and therapies to target their neurotoxic functions are not widely available. Here, we provide the oxidative stress innate immune cell atlas in neuroinflammatory disease, and report the discovery of new druggable pathways. Transcriptional profiling of oxidative stress-producing CNS innate immune cells (Tox-seq) identified a core oxidative stress gene signature coupled to coagulation and glutathione pathway genes shared between a microglia cluster and infiltrating macrophages. Tox-seq followed by a microglia high-throughput screen (HTS) and oxidative stress gene network analysis, identified the glutathione regulating compound acivicin with potent therapeutic effects decreasing oxidative stress and axonal damage in chronic and relapsing multiple sclerosis (MS) models. Thus, oxidative stress transcriptomics identified neurotoxic CNS innate immune populations and may enable the discovery of selective neuroprotective strategies.
Manzamine A, a -carboline alkaloid present in several marine sponge species, inhibits the growth of the rodent malaria parasite Plasmodium berghei in vivo. More than 90% of the asexual erythrocytic stages of P. berghei were inhibited after a single intraperitoneal injection of manzamine A into infected mice. A remarkable aspect of manzamine A treatment is its ability to prolong the survival of highly parasitemic mice, with 40% recovery 60 days after a single injection. Oral administration of an oil suspension of manzamine A also produced significant reductions in parasitemia. The plasma manzamine A concentration peaked 4 h after injection and remained high even at 48 h. Morphological changes of P. berghei were observed 1 h after treatment of infected mice. (؊)-8-Hydroxymanzamine A also displayed antimalarial activity, whereas manzamine F, a ketone analog of manzamine A, did not. Our results suggest that manzamine A and (؊)-8-hydroxymanzamine A are promising new antimalarial agents.Malaria remains the most devastating infectious parasitic disease, inflicting both death and economic losses on at least half the world's population. Numerous attempts have been made to control the disease by using vector control measures and/or chemoprophylaxis, but they have had limited success (18). Immunoprophylaxis holds promise, but effective vaccines are still not available. Presently, the most effective way of dealing with malaria is the administration of chemotherapeutic agents. Although drug treatments of malaria are currently the best means of disease management, there is an urgent need for the development of structurally novel and effective antimalarial drugs because of increasing resistance to most presently available antimalarial drugs (15,16,19).Some of the most effective antimalarial drugs available, quinine and artemisinin, are natural products derived from terrestrial plants. However, recent research suggests that marine organisms may also produce compounds with activity against malaria parasites (4,11,21). Manzamines are a structurally unique group of -carboline alkaloids isolated from several marine sponge species found in waters of the Indian Ocean and the Pacific Ocean. Manzamine A (Fig. 1) was initially isolated from a Haliclona sp. (17) but has been subsequently found in other genera of marine sponges, including Pellina (14), Pachypellina (7), Xestospongia (3, 8), Ircinia (10), and Amphimedon (9). In addition, more than 30 other compounds structurally related to manzamine A have been isolated from sponges and characterized; these include 8-hydroxymanzamine A and the ketone derivative manzamine F (Fig. 1). The origin, isolation, and chemistry of various manzamines have been reviewed (6, 13), with the complete synthesis of manzamine A being recently reported (20). The manzamines previously received considerable interest because of their potential as anticancer agents, with both manzamine A and manzamine F inhibiting the growth of P-388 mouse leukemia cells (6) and 8-hydroxymanzamine A showing moderate cytotoxici...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.