Raman spectroscopy is an optical technique based on inelastic scattering of light by vibrating molecules and can provide chemical fingerprints of cells, tissues or biofluids. The high chemical specificity, minimal or lack of sample preparation and the ability to use advanced optical technologies in the visible or near-infrared spectral range (lasers, microscopes, fibre-optics) have recently led to an increase in medical diagnostic applications of Raman spectroscopy. The key hypothesis underpinning this field is that molecular changes in cells, tissues or biofluids, that are either the cause or the effect of diseases, can be detected and quantified by Raman spectroscopy. Furthermore, multivariate calibration and classification models based on Raman spectra can be developed on large "training" datasets and used subsequently on samples from new patients to obtain quantitative and objective diagnosis. Historically, spontaneous Raman spectroscopy has been known as a low signal technique requiring relatively long acquisition times. Nevertheless, new strategies have been developed recently to overcome these issues: non-linear optical effects and metallic nanoparticles can be used to enhance the Raman signals, optimised fibre-optic Raman probes can be used for real-time in-vivo single-point measurements, while multimodal integration with other optical techniques can guide the Raman measurements to increase the acquisition speed and spatial accuracy of diagnosis. These recent efforts have advanced Raman spectroscopy to the point where the diagnostic accuracy and speed are compatible with clinical use. This paper reviews the main Raman spectroscopy techniques used in medical diagnostics and provides an overview of various applications.
Tissue-conserving surgery is used increasingly in cancer treatment. However, one of the main challenges in this type of surgery is the detection of tumor margins. Histopathology based on tissue sectioning and staining has been the gold standard for cancer diagnosis for more than a century. However, its use during tissue-conserving surgery is limited by time-consuming tissue preparation steps (1-2 h) and the diagnostic variability inherent in subjective image interpretation. Here, we demonstrate an integrated optical technique based on tissue autofluorescence imaging (high sensitivity and high speed but low specificity) and Raman scattering (high sensitivity and high specificity but low speed) that can overcome these limitations. Automated segmentation of autofluorescence images was used to select and prioritize the sampling points for Raman spectroscopy, which then was used to establish the diagnosis based on a spectral classification model (100% sensitivity, 92% specificity per spectrum). This automated sampling strategy allowed objective diagnosis of basal cell carcinoma in skin tissue samples excised during Mohs micrographic surgery faster than frozen section histopathology, and one or two orders of magnitude faster than previous techniques based on infrared or Raman microscopy. We also show that this technique can diagnose the presence or absence of tumors in unsectioned tissue layers, thus eliminating the need for tissue sectioning. This study demonstrates the potential of this technique to provide a rapid and objective intraoperative method to spare healthy tissue and reduce unnecessary surgery by determining whether tumor cells have been removed.
The development of human liver scaffolds retaining their 3-dimensional structure and extra-cellular matrix (ECM) composition is essential for the advancement of liver tissue engineering. We report the design and validation of a new methodology for the rapid and accurate production of human acellular liver tissue cubes (ALTCs) using normal liver tissue unsuitable for transplantation. The application of high shear stress is a key methodological determinant accelerating the process of tissue decellularization while maintaining ECM protein composition, 3D-architecture and physico-chemical properties of the native tissue. ALTCs were engineered with human parenchymal and non-parenchymal liver cell lines (HepG2 and LX2 cells, respectively), human umbilical vein endothelial cells (HUVEC), as well as primary human hepatocytes and hepatic stellate cells. Both parenchymal and non-parenchymal liver cells grown in ALTCs exhibited markedly different gene expression when compared to standard 2D cell cultures. Remarkably, HUVEC cells naturally migrated in the ECM scaffold and spontaneously repopulated the lining of decellularized vessels. The metabolic function and protein synthesis of engineered liver scaffolds with human primary hepatocytes reseeded under dynamic conditions were maintained. These results provide a solid basis for the establishment of effective protocols aimed at recreating human liver tissue in vitro.
Breast-conserving surgery (BCS) is increasingly employed for the treatment of early stage breast cancer. One of the key challenges in BCS is to ensure complete removal of the tumour while conserving as much healthy tissue as possible. In this study we have investigated the potential of Raman micro-spectroscopy (RMS) for automated intra-operative evaluation of tumour excision. First, a multivariate classification model based on Raman spectra of normal and malignant breast tissue samples was built and achieved diagnosis of mammary ductal carcinoma (DC) with 95.6% sensitivity and 96.2% specificity (5-fold cross-validation). The tumour regions were discriminated from the healthy tissue structures based on increased concentration of nucleic acids and reduced concentration of collagen and fat. The multivariate classification model was then applied to sections from fresh tissue of new patients to produce diagnosis images for DC. The diagnosis images obtained by raster scanning RMS were in agreement with the conventional histopathology diagnosis but were limited to long data acquisition times (typically 10,000 spectra mm(-2), which is equivalent to ~5 h mm(-2)). Selective-sampling based on integrated auto-fluorescence imaging and Raman spectroscopy was used to reduce the number of Raman spectra to ~20 spectra mm(-2), which is equivalent to an acquisition time of ~15 min for 5 × 5 mm(2) tissue samples. This study suggests that selective-sampling Raman microscopy has the potential to provide a rapid and objective intra-operative method to detect mammary carcinoma in tissue and assess resection margins.
Multimodal spectral histopathology (MSH), an optical technique combining tissue auto-fluorescence (AF) imaging and Raman micro-spectroscopy (RMS), was previously proposed for detection of residual basal cell carcinoma (BCC) at the surface of surgically-resected skin tissue. Here we report the development of a fully-automated prototype instrument based on MSH designed to be used in the clinic and operated by a non-specialist spectroscopy user. The algorithms for the AF image processing and Raman spectroscopy classification had been first optimised on a manually-operated laboratory instrument and then validated on the automated prototype using skin samples from independent patients. We present results on a range of skin samples excised during Mohs micrographic surgery, and demonstrate consistent diagnosis obtained in repeat test measurement, in agreement with the reference histopathology diagnosis. We also show that the prototype instrument can be operated by clinical users (a skin surgeon and a core medical trainee, after only 1-8 hours of training) to obtain consistent results in agreement with histopathology. The development of the new automated prototype and demonstration of inter-instrument transferability of the diagnosis models are important steps on the clinical translation path: it allows the testing of the MSH technology in a relevant clinical environment in order to evaluate its performance on a sufficiently large number of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.