1. Semi-isolated preparations of the nine-celled cardiac ganglion of the crab, Portunus sanguinolentus, were studied electrophysiologically, using simultaneous recording from extracellular and two or three intracellular electrodes. Nine penetrations of small cells were achieved. 2. Three large (80 x 120 micron) cells lie near the anterior end of the 5-mm main trunk; two large and four small (less than 50 micron) cells at the posterior end. Large-cell axons pass along the main trunk and then exit to innervate cardiac muscle; small-cell axons do not leave the ganglion. 3. The semi-isolated ganglion produces spontaneous electrical activity organized into regularly patterned, rhythmic bursts of large- and small-cell impulses recurring at rates of 0.3-0.6/s and lasting 500-800 ms. Small impulse activity commences and ends each burst. Small cells fire trains during the burst, but impulses are not synchronized among them. Large-cell trains are synchronous, are at about one-half the frequency, and have fewer impulses than small-cell trains. 4. Intracellular recordings from small cells show a slow, pacemaker depolarization from a maximum membrane potential of -54 mV leading with only a slight inflection at ca. -50 mV to a depolarized plateau at ca. -40 mV; nonovershooting impulses are superimposed on this but cease before it repolarizes. Impulses, therefore, arise at a site distant from the soma and do not invade it. Deflections suggesting synaptic potentials are not seen. 5. Intracellular recordings from large cells show complex depolarizations corresponding to extracellularly recorded bursts. These represent excitatory postsynaptic potentials (EPSPs) corresponding with individual small-cell impulses, attenuated, non-overshooting spikes, and an underlying slow depolarization; usually no pacemaker depolarization is apparent between bursts. Chemically mediated transmission is probable for the EPSPs because they show delay, increase in amplitude with hyperpolarization, sometimes show facilitation, and are reduced in saline having one-third Ca, 3 x Mg. 6. EPSPs, impulses, and the slow depolarization occur synchronously among the large cells. Potentials recorded from posterior cells are attenuated and slower than those of the anterior cells. This is interpreted to reflect sites of occurrence more distant from the soma in the posterior than in the anterior cells. Impulses do not invade the somata. 7. Intracellular recordings from large-cell axons 4 mm from the soma show overshooting action potentials arising sharply from a base line. EPSPs are absent or highly attenuated and there is little underlying depolarization (less than 2 mV). 8. Current passing with electrodes intracellular to two cells has established directly that all large cells are electrotonically coupled and that an anterior cell and a small cell are coupled. Changes of burst rate during current passing into any large cell indicate that all large cells and small cells are electrotonically coupled. 9...
1. Tetrodotoxin-resistant, active responses to depolarization of the large cardiac ganglion cells were studied in semi-isolated preparations from the crab, Portunus sanguinolentus. Impulse activity was monitored with extracellular electrodes, simultaneous recordings from two or three large cells were made with intracellular electrodes, and current was passed via a bridge or second intracellular electrode. Preparations were continuously perfused with saline containing 3 x 10(-7) M tetrodotoxin (TTX). 2. About 20 min after introduction of TTX, small-cell impulses and resultant EPSPs in large cells cease, while rhythmic, spontaneous bursting of large cells continues. A pacemaker depolarization between bursts and slow depolarizations underlying the impulse bursts are prominent at this time. Shortly after, spontaneous burst rate slows, and at ca. 25 min, the ganglion becomes electrically quiescent. 3. In the quiescent, TTX-perfused ganglion, injection of depolarizing current into any one of the large cells results in active responses. At current strengths of sufficient intensity and duration (e.g., 20 nA, 20 ms; 5 nA, 500 ms) to depolarize a large cell by ca. 10 mV from resting potential (-53 mV, avg), the graded responses become regenerative and of constant form, provided the stimulation rate is less thna 0.15/s. Such responses have been termed "driver potentials." At more rapid rates, thresholds are increased and responses reduced. 4. Driver potentials of anterior large cells reach peak amplitudes of ca. 20 mV (to -32 mV), have maximum rates of rise of 0.45 V/s and of fall of 0.2 V/s, and a duration of ca. 250 ms. They are followed by hyperpolarizing afterpotentials, a rapidly decaying one (1 s) to -58 mV, followed by a slowly decaying one (7.5 s), -55 mV. Responses of posterior large cells are smaller (16 mV) and slower; the site of active response may be at a distance from the soma. 5. The ability of elicit near-synchronous responses and the identity of amplitude and form of responses among anterior cells and of posterior cells, regardless of which cell receives depolarizing current, indicates that all cells undergo active responses and are stimulated by electrotonic spread of depolarization. 6. The responses involve a conductance increase since memses during a driver potential are much reduced. 7. Depolarization by steady current increases the absolute threshold, decreases the maximum depolarization of the peak, and slows rates of rise and fall. Hyperpolarization increases rates of rise and fall; the absolute value reached by the peak depolarization is unchanged. Hyperpolarization reduces the amplitude of the rapid after-potential relative to the displaced resting potential. 8. Hyperpolarizing current pulses imposed during the rise and peak of driver-potential responses are followed by redevelopment of a complete response. Sufficiently strong hyperpolarization can terminate a response. The current strength needed to terminate a response decreases the later during the response the pulse is given...
We have reviewed 38 surgically treated cases of spontaneous posterior interosseous nerve palsy in 38 patients with a mean age of 43 years (13 to 68) in order to identify clinical factors associated with its prognosis. Interfascicular neurolysis was performed at a mean of 13 months (1 to 187) after the onset of symptoms. The mean follow-up was 21 months (5.5 to 221). Medical Research Council muscle power of more than grade 4 was considered to be a good result. A further 12 cases in ten patients were treated conservatively and assessed similarly. Of the 30 cases treated surgically with available outcome data, the result of interfascicular neurolysis was significantly better in patients < 50 years old (younger group (18 nerves); good: 13 nerves (72%), poor: five nerves (28%)) than in cases > 50 years old (older group (12 nerves); good: one nerve (8%), poor: 11 nerves (92%)) (p < 0.001). A pre-operative period of less than seven months was also associated with a good result in the younger group (p = 0.01). The older group had a poor result regardless of the pre-operative delay. Our recommended therapeutic approach therefore is to perform interfascicular neurolysis if the patient is < 50 years of age, and the pre-operative delay is < seven months. If the patient is > 50 years of age with no sign of recovery for seven months, or in the younger group with a pre-operative delay of more than a year, we advise interfascicular neurolysis together with tendon transfer as the primary surgical procedure.
Synovial hemangiomas are relatively rare tumors. Clinicians are inclined to delay treatment in most cases. We encountered three cases, in which there was a delay before the patients were operated on. During the relatively long-term postoperative follow up, none of the three cases showed a recurrence of either hemoarthrosis or knee pain. However, limitations in motion or osteoarthritic changes in the affected knee joint remained. We therefore consider that synovial hemangiomas of the knee, even if found in young children, could possibly result in postoperative limitations in motion or osteoarthritic changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.