Nitric oxide (NO) is produced from endothelial cells and cardiomyocytes composing the myocardium and benefits cardiac function through both vascular-dependent and—independent effects. This study was purposed to investigate the possible adverse effect of NO focusing on the voltage-gated Na+ channel in cardiomyocytes. We carried out patch-clamp experiments on rat neonatal cardiomyocytes demonstrating that NOC-18, an NO donor, significantly reduced Na+ channel current in a dose-dependent manner by a long-term application for 24 h, accompanied by a reduction of Nav1.5-mRNA and the protein, and an increase of a transcription factor forkhead box protein O1 (FOXO1) in the nucleus. The effect of NOC-18 on the Na+ channel was blocked by an inhibitor of thiol oxidation N-ethylmaleimide, a disulfide reducing agent disulfide 1,4-Dithioerythritol, or a FOXO1 activator paclitaxel, suggesting that NO is a negative regulator of the voltage-gated Na+ channel through thiols in regulatory protein(s) for the channel transcription.
Background
Traumatic femoral artery occlusion caused by blunt impact to the groin is rare; this condition is called the “motor-scooter handlebar syndrome.” We herein report a case of traumatic femoral artery occlusion and performed a literature review on its diagnosis and treatment.
Case presentation
An 18-year-old man visited our hospital complaining of pain and swelling in his right groin and numbness in his right leg after a bicycle collision accident. Contrast computed tomography revealed an occlusion extending from the right external iliac artery to the common femoral artery. The right ankle–brachial index (ABI) was 0.50. We performed thrombectomy and femoral artery repair with a saphenous vein patch. The postoperative course was good, and the right ABI improved to 1.05.
Conclusions
Motor-scooter handlebar syndrome is a rare complication of traumatic injury. The presence of vascular injury should be considered in patients with groin or lower abdomen injuries following an impact with handlebars or similar hard objects. This injury often needs surgical treatment; therefore, prompt diagnosis is the key to successful treatment.
Oenanthe javanica is a vegetable grown in East Asia and Australia in which the roots and aerial parts are boiled together to make certain traditional dishes. Nineteen compounds (1-19) were isolated from O. javanica roots and the chemical structures of 2 new norlignans were determined. The inhibitory effects of the compounds on hyaluronidase and degranulation in RBL-2H3 cells were evaluated to determine antiallergic and antiinflammation activities. Saponins (2-4) and the new norlignan seric acid G (12) were among the active compounds identified. Seric acid G (12), a methoxy derivative of seric acid F (11), was obtained as an interconverting mixture of 3:1 trans-cis isomers. Seric acids F and G (11, 12) were derived from seric acids C (10) and E, respectively, by decarboxylation and dehydration reactions that occurred during heating. It was confirmed by HPLC analysis that all eleven of the O. javanica cultivars contained seric acid C (10).
Gemcitabine is an antineoplastic drug commonly used in the treatment of several types of cancers including pancreatic cancer and non–small cell lung cancer. Although gemcitabine-induced cardiotoxicity is widely recognized, the exact mechanism of cardiac dysfunction causing arrhythmias remains unclear. The objective of this study was to electrophysiologically evaluate the proarrhythmic cardiotoxicity of gemcitabine focusing on the human rapid delayed rectifier potassium channel, hERG channel. In heterologous hERG expressing HEK293 cells (hERG-HEK cells), hERG channel current (IhERG) was reduced by gemcitabine when applied for 24 h but not immediately after the application. Gemcitabine modified the activation gating properties of the hERG channel toward the hyperpolarization direction, while inactivation, deactivation or reactivation gating properties were unaffected by gemcitabine. When gemcitabine was applied to hERG-HEK cells in combined with tunicamycin, an inhibitor of N-acetylglucosamine phosphotransferase, gemcitabine was unable to reduce IhERG or shift the activation properties toward the hyperpolarization direction. While a mannosidase I inhibitor kifunensine alone reduced IhERG and the reduction was even larger in combined with gemcitabine, kifunensine was without effect on IhERG when hERG-HEK cells were pretreated with gemcitabine for 24 h. In addition, gemcitabine down-regulated fluorescence intensity for hERG potassium channel protein in rat neonatal cardiomyocyte, although hERG mRNA was unchanged. Our results suggest the possible mechanism of arrhythmias caused by gemcitabine revealing a down-regulation of IhERG through the post-translational glycosylation disruption possibly at the early phase of hERG channel glycosylation in the endoplasmic reticulum that alters the electrical excitability of cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.