We study an optimal execution problem with uncertain market impact to derive a more realistic market model. We construct a discrete-time model as a value function for optimal execution. Market impact is formulated as the product of a deterministic part increasing with execution volume and a positive stochastic noise part. Then, we derive a continuous-time model as a limit of a discrete-time value function. We find that the continuous-time value function is characterized by a stochastic control problem with a Lévy process.
This paper is concerned with the integration by parts formulae for the pinned or the standard Wiener measures restricted on a space of paths staying between two curves. The boundary measures, concentrated on the set of paths touching one of the curves once, are specified. Our approach is based on the polygonal approximations. In particular, to establish the convergence of boundary terms, a uniform estimate is derived by means of comparison argument for a sequence of random walks conditioned to stay between two polygons. Applying the Brascamp-Lieb inequality, the stochastic integrals of Wiener type are constructed relative to the three-dimensional Bessel bridge or the Brownian meander.Keywords Integration by parts and Wiener measure · 3D Bessel bridge · Brownian meander · SPDE with reflection · Brascamp-Lieb inequality Mathematics Subject Classification (2000) Primary 60H07 · Secondary 60H15 · 31C25
Abstract. This paper is a continuation of [8], in which we derived a continuoustime value function corresponding to an optimal execution problem with uncertain market impact as the limit of a discrete-time value function. Here, we investigate some properties of the derived value function. In particular, we show that the function is continuous and has the semigroup property, which is strongly related to the Hamilton-Jacobi-Bellman quasi-variational inequality. Moreover, we show that noise in market impact causes risk-neutral assessment to underestimate the impact cost. We also study typical examples under a log-linear/quadratic market impact function with Gamma-distributed noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.