There has been increasing interest in phenomena emerging from relativistic electrons in a solid, which have a potential impact on spintronics and magnetoelectrics. One example is the Rashba effect, which lifts the electron-spin degeneracy as a consequence of spin-orbit interaction under broken inversion symmetry. A high-energy-scale Rashba spin splitting is highly desirable for enhancing the coupling between electron spins and electricity relevant for spintronic functions. Here we describe the finding of a huge spin-orbit interaction effect in a polar semiconductor composed of heavy elements, BiTeI, where the bulk carriers are ruled by large Rashba-like spin splitting. The band splitting and its spin polarization obtained by spin- and angle-resolved photoemission spectroscopy are well in accord with relativistic first-principles calculations, confirming that the spin splitting is indeed derived from bulk atomic configurations. Together with the feasibility of carrier-doping control, the giant-Rashba semiconductor BiTeI possesses excellent potential for application to various spin-dependent electronic functions.
Ferroelectric polarization of 6.3 μC cm(-2) is induced by the neutral-to-ionic transition, upon which nonpolar molecules of electron donor tetrathiafulvalene (TTF) and acceptor p-chloranil (CA) are incompletely ionized to ±0.60e and dimerized along the molecular stacking chain. We find that the ferroelectric properties are governed by intermolecular charge transfer rather than simple displacement of static point charge on molecules. The observed polarization and poling effect on the absolute structural configuration can be interpreted in terms of electronic ferroelectricity, which not only exhibits antiparallel polarity to the ionic displacement but also enhances the polarization more than 20 times that of the point-charge model.
The imidazole unit is chemically stable and ubiquitous in biological systems; its proton donor and acceptor moieties easily bind molecules into a dipolar chain. Here we demonstrate that chains of these amphoteric molecules can often be bistable in electric polarity and electrically switchable, even in the crystalline state, through proton tautomerization. Polarization–electric field (P–E) hysteresis experiments reveal a high electric polarization ranging from 5 to 10 μC cm−2 at room temperature. Of these molecules, 2-methylbenzimidazole allows ferroelectric switching in two dimensions due to its pseudo-tetragonal crystal symmetry. The ferroelectricity is also thermally robust up to 400 K, as is that of 5,6-dichloro-2-methylbenzimidazole (up to ~373 K). In contrast, three other benzimidazoles exhibit double P–E hysteresis curves characteristic of antiferroelectricity. The diversity of imidazole substituents is likely to stimulate a systematic exploration of various structure–property relationships and domain engineering in the quest for lead- and rare-metal-free ferroelectric devices.
Abstract-A time-interleaved A-D converter (ADC) system is an effective way to implement a high-sampling-rate ADC with relatively slow circuits. In the system, several channel ADCs operate at interleaved sampling times as if they were effectively a single ADC operating at a much higher sampling rate. However, mismatches such as offset, gain mismatches among channel ADCs as well as timing skew of the clocks distributed to them degrade S/N of the ADC system as a whole. This paper analyzes the channel mismatch effects in the time-interleaved ADC system. Previous analysis showed the effect for each mismatch individually, however in this paper we derive explicit formulas for the mismatch effects when all of offset, gain and timing mismatches exist together. We have clarified that the gain and timing mismatch effects interact with each other but the offset mismatch effect is independent from them, and this can be seen clearly in frequency domain. We also discuss the bandwidth mismatch effect. The derived formulas can be used for calibration algorithms to compensate for the channel mismatch effects.
Recent discoveries of large magnetoresistance in non-magnetic semiconductors have gained much attention because the size of the effect is comparable to, or even larger than, that of magnetoresistance in magnetic systems. Conventional magnetoresistance in doped semiconductors is straightforwardly explained as the effect of the Lorentz force on the carrier motion, but the reported unusually large effects imply that the underlying mechanisms have not yet been fully explored. Here we report that a simple device, based on a lightly doped silicon substrate between two metallic contacts, shows a large positive magnetoresistance of more than 1,000 per cent at room temperature (300 K) and 10,000 per cent at 25 K, for magnetic fields between 0 and 3 T. A high electric field is applied to the device, so that conduction is space-charge limited. For substrates with a charge carrier density below approximately 10(13) cm(-3), the magnetoresistance exhibits a linear dependence on the magnetic field between 3 and 9 T. We propose that the observed large magnetoresistance can be explained by quasi-neutrality breaking of the space-charge effect, where insufficient charge is present to compensate the electrons injected into the device. This introduces an electric field inhomogeneity, analogous to the situation in other semiconductors in which a large, non-saturating magnetoresistance was observed. In this regime, the motions of electrons become correlated, and thus become dependent on magnetic field. Although large positive magnetoresistance at room temperature has been achieved in metal-semiconductor hybrid devices, we have now realized it in a simpler structure and in a way different from other known magnetoresistive effects. It could be used to develop new magnetic devices from silicon, which may further advance silicon technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.