BACKGROUNDNeoadjuvant hormonal therapy (NHT) is performed to improve the outcome in organ-confined prostate cancer. However, there is little information regarding the relationship between angiogenesis and NHT. The aim of this study was to identify a suitable method to evaluate the angiogenic status of tissue, and to determine the prognostic value of this method for biochemical recurrence in patients who had undergone radical prostatectomy after NHT.METHODSWe analyzed 108 formalin-fixed specimens from patients treated by radical prostatectomy. NHT was administered in 48 patients (52.9%) and 60 patients who had a similar Gleason score and pT stage were selected as a non-NHT treated control group. Microvessel density (MVD) was measured using anti-CD31, anti-CD34, and anti-CD105 antibodies. The expressions of vascular endothelial growth factor (VEGF)-A and thrombospondin (TSP)-1 were also evaluated by immunohistochemistry. The prognostic value of CD31-, CD34-, and CD105-MVD for biochemical recurrence was investigated.RESULTSThe mean/SD of CD105-MVD in the NHT group (13.3/4.7) was significantly (P < 0.001) lower than that in the non-NHT group (125.8/7.3). In the NHT group, CD105-MVD was associated with pT stage and it was positively correlated with VEGF-A expression (r = 0.56, P < 0.001) and negatively correlated with TSP-1 expression (r = 0.42, P = 0.003). CD105-MVD was identified as a significant predictor of biochemical recurrence (BCR) in patients treated with NHT (log rank test, P < 0.001). Although CD31- and CD34-MVD were significantly associated with pT stage or Gleason score in non-NHT group, they were not associated with pathological features and BCR in NHT group.CONCLUSIONSOur results indicate that CD105-MVD reflects the angiogenic conditions in prostate cancer tissues treated with NHT. CD105-MVD was also identified as a significant and independent predictor of biochemical recurrence in prostate cancer patients who underwent radical prostatectomy with NHT. Prostate 75:84–91, 2015. © 2014 The Authors. The Prostate published by Wiley Periodicals, Inc.
IntroductionHuman antigen R (HuR) regulates the stability of mRNA and is associated with cell proliferation, angiogenesis, and lymphangiogenesis. However, the clinical significance and pathological role of HuR in bladder cancer remains unclear. The main objective of this investigation was to clarify the relationships between HuR expression and clinical significance and cancer cell proliferation, angiogenesis, lymphangiogenesis, and expressions of cyclooxygenase (COX)-2 and vascular endothelial growth factor (VEGF)-A, -C, and -D.MethodsAll expressions were examined by immunohistochemical techniques in 122 formalin-fixed specimens of bladder cancer patients. HuR expression was evaluated separately with cytoplasmic and nuclear staining. Cell proliferation, angiogenesis and lymphangiogenesis were measured as the percentage of Ki-67-positive cell (proliferation index, PI), CD34-stained vessels (microvessel density, MVD), and D2-40-stained vessels (lymph vessel density, LVD). Relationships between each HuR expression and clinicopathological features, prognosis, and expressions of COX-2 and VEGFs were analyzed by multi-variate analyses. HuR expression was also investigated in 10 mice of N-Butyl-N-[4-hydroxybutil] nitrosamine (BBN) induced bladder cancer model.ResultsIn human tissues, high cytoplasmic expression was seen in 5% and 25.4% of normal and cancer cells, respectively. Nuclear HuR expression bore no significant relationship to any pathological features. However, cytoplasmic HuR expression appeared positively associated with pT stage and grade (P<0.001). In mouse tissues, similar trends were confirmed. Cytoplasmic expression correlated with PI, MVD, and LVD, as well as expression of VEGF-A and -C, but not VEGF-D. High cytoplasmic expression of HuR was a significant predictor of metastasis and cause-specific survival, and was identified as a prognostic correlative factor for metastasis (hazard ratio, 4.75; P = 0.028) in a multivariate analysis model that included pathological features.ConclusionsCytoplasmic HuR appears to play important roles in cell proliferation, progression, and survival of bladder cancer patients. Its expression was associated with angiogenesis, lymphangiogenesis, and expressions of VEGF-A and –C.
Chronic kidney disease (CKD) is recognized as an irreversible reduction of functional nephrons and leads to an increased risk of various pathological conditions, including cardiovascular disease and neurological disorders, such as coronary artery calcification, hypertension, and stroke. In addition, CKD patients have impaired immunity against bacteria and viruses. Conversely, kidney transplantation (KT) is performed for patients with end-stage renal disease as a renal replacement therapy. Although kidney function is almost normalized by KT, immunosuppressive therapy is essential to maintain kidney allograft function and to prevent rejection. However, these patients are more susceptible to infection due to the immunosuppressive therapy required to maintain kidney allograft function. Thus, both CKD and KT present disadvantages in terms of suppression of immune function. Periodontal disease is defined as a chronic infection and inflammation of oral and periodontal tissues. Periodontal disease is characterized by the destruction of connective tissues of the periodontium and alveolar bone, which may lead to not only local symptoms but also systemic diseases, such as cardiovascular diseases, diabetes, liver disease, chronic obstructive pulmonary disease, and several types of cancer. In addition, the prevalence and severity of periodontal disease are significantly associated with mortality. Many researchers pay special attention to the pathological roles and clinical impact of periodontal disease in patients with CKD or KT. In this review, we provide information regarding important modulators of periodontal disease to better understand the relationship between periodontal disease and CKD and/or KT. Furthermore; we evaluate the impact of periodontal disease on various pathological conditions in patients with CKD and KT. Moreover, pathogens of periodontal disease common to CKD and KT are also discussed. Finally, we examine the importance of periodontal care in these patients. Thus, this review provides a comprehensive overview of the pathological roles and clinical significance of periodontal disease in patients with CKD and KT.
Heme oxygenase (HO)-1 is upregulated in malignancies and, in turn, regulates other cancer-related factors. Although HO-1 expression has been associated with cigarette smoking under various pathologic conditions, little is known about their association in patients with bladder cancer. HO-1 expression was assessed in 215 formalin-fixed bladder cancer specimens by immunohistochemistry. Microvessel density, lymph vessel density (LVD), proliferation index (PI), and expression of the vascular endothelial growth factor (VEGF)-A, -C, and -D, cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-2, and MMP-9 were investigated by similar methods. Multivariate analyses were performed to evaluate the pathologic role and predictive value of HO-1 expression. Our results demonstrated that HO-1 expression was positively associated with T stage, lymph node metastasis, and grade. HO-1 expression was also positively correlated with PI, LVD, and expression levels of VEGF-D, COX-2, MMP-2, and MMP-9 (P < 0.001). In addition, multivariate analyses showed that HO-1 expression positively correlated with smoking intensity. Positive HO-1 expression was a significant predictor of subsequent metastasis (P = 0.008) and poor cause-specific survival (P < 0.001). Similarly, multivariate analyses showed that HO-1 expression was a predictor of cause-specific survival (hazard ratio = 3.13, P = 0.013). In conclusion, pathologic changes of HO-1-related factors were dependent on smoking intensity. Smoking upregulated HO-1 expression, and HO-1 was associated with malignant behavior of bladder cancer. Cancer cell proliferation, lymphangiogenesis, and expression levels of VEGF-D, COX-2, and MMP-2 played important roles in these HO-1-related effects. The clinical correlations of HO-1 were regulated by a complex mechanism that depended on smoking intensity.
Bladder cancer (BC) is a representative of urological cancer with a high recurrence and metastasis potential. Currently, cisplatin-based chemotherapy and immune checkpoint inhibitors are used as standard therapy in patients with advanced/metastatic BC. However, these therapies often show severe adverse events, and prolongation of survival is unsatisfactory. Therefore, a treatment strategy using natural compounds is of great interest. In this review, we focused on the anti-cancer effects of isothiocyanates (ITCs) derived from cruciferous vegetables, which are widely cultivated and consumed in many regions worldwide. Specifically, we discuss the anti-cancer effects of four ITC compounds—allyl isothiocyanate, benzyl isothiocyanate, sulforaphane, and phenethyl isothiocyanate—in BC; the molecular mechanisms underlying their anti-cancer effects; current trends and future direction of ITC-based treatment strategies; and the carcinogenic potential of ITCs. We also discuss the advantages and limitations of each ITC in BC treatment, furthering the consideration of ITCs in treatment strategies and for improving the prognosis of patients with BC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.