Sugar chain immobilized polymer particles having both magnetic and fluorescent properties can be expected to be useful in a wide variety of biomedical applications such as the detection, separation, and purification of proteins, viruses, or bacteria, because sugar chains specifically adsorb them. Since high magnetic responsiveness is required for such applications, we attempted to fabricate core-shell particles consisting of a submicron-sized magnetic core and a thin polymer shell (nano-to dozens of nanometers thick) that incorporates a fluorescent dye, with sugar molecules immobilized on the surface. Soapfree emulsion polymerization using methyl methacrylate (MMA) monomer and potassium persulfate (KPS) initiator in the presence of aminopropyltrimethoxysilane-treated Ni particles, octyl-β-D-glucopyranoside (octyl-glc), and rhodamine B (RhB) produced a glucose-immobilized fluorescent PMMA thin shell on a Ni particle (Ni/PMMA/RhB/octyl-glc). Electrostatic interaction was used both to incorporate RhB into the PMMA shell and to coat the Ni core with the PMMA-RhB shell. Glucose was immobilized on the PMMA shell by embedding a hydrophobic octyl group derived from octyl-glc in the PMMA matrix, and the resulting sugar-immobilized PMMA shell was able to adsorb protein (concanavalin A; a protein that specifically adsorbs glucose). The resulting Ni/PMMA/RhB/octyl-glc particles were well-dispersed in water, detected by highly sensitive fluorescence techniques, and could be collected by a magnet within 10 sec. They are expected to be applied to detect biological substances such as various proteins and viruses by changing the glucose moiety of the particle surface to other functional glycans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.