Optical dual-pulse pumping actively creates quantum-mechanical superposition of the electronic and phononic states in a bulk solid. We here made transient reflectivity measurements in an n-GaAs using a pair of relative-phase-locked femtosecond pulses and found characteristic interference fringes. This is a result of quantum-path interference peculiar to the dual-pulse excitation as indicated by theoretical calculation. Our observation reveals that the pathway of coherent phonon generation in the n-GaAs is impulsive stimulated Raman scattering at the displaced potential due to the surfacecharge field, even though the photon energy lies in the opaque region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.