Two unresolved issues regarding the identification and characterization of hippocampal interneurons were addressed in this study. One issue was the longstanding inability to detect gamma-aminobutyric acid (GABA) in the somata of several hippocampal interneuron subpopulations, which has prevented the unequivocal identification of all hippocampal interneurons as GABA neurons. The second issue was related to the identification of the hippocampal interneurons that constitutively express substance P (neurokinin-1) receptors (SPRs). The recent development of neurotoxins that specifically target SPR-expressing cells suggests that it may be possible to destroy hippocampal inhibitory interneurons selectively for experimental purposes. Although SPRs are apparently expressed in the hippocampus only by interneurons, colocalization studies have found that most interneurons of several subtypes and hippocampal subregions appear SPR-negative. Thus, the identities and locations of the inhibitory interneurons that are potential targets of an SPR-directed neurotoxin remain in doubt. Using newly developed methods designed to copreserve and colocalize GABA and polypeptide immunoreactivities with increased sensitivity, the authors report that virtually all hippocampal interneuron somata that are immunoreactive for parvalbumin (PV), calbindin, calretinin, somatostatin (SS), neuropeptide Y, cholecystokinin, and vasoactive intestinal peptide exhibited clearly detectable, somal, GABA-like immunoreactivity (LI). Hippocampal SPR-LI was detected only on the somata and dendrites of GABA-immunopositive interneurons. All glutamate receptor subunit 2-immunoreactive principal cells, including dentate granule cells, hilar mossy cells, and hippocampal pyramidal cells, were devoid of detectable SPR-LI, even after prolonged electrical stimulation of the perforant pathway that induced the expression of other neuronal proteins in principal cells. Thus, hippocampal interneurons of all subtypes and subregions were found to be SPR-immunoreactive, including the PV-positive interneurons of the dentate hilus and hippocampus, and the SS-positive cells of area CA1, both of which were previously reported to lack SPR-LI. Only minor proportions of hippocampal interneurons appeared clearly devoid of detectable SPR-LI. These results demonstrate for the first time that all identified interneuron subpopulations of the rat hippocampus are GABA-immunoreactive, and that many inhibitory interneurons of all subtypes in all subregions of the rat hippocampus express SPRs constitutively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.