Although fish in natural populations may carry high body burdens of both organic and inorganic mercury, the effects of this divalent metal on such lower vertebrates is poorly understood. In this report, inorganic mercury in the form of mercuric chloride (HgCl2) is shown to produce both high-dose inhibition and low-dose activation of leukocytes in a marine teleost fish, Sciaenops ocellatus. Concentrations of inorganic mercury > or = 10 microM suppressed DNA synthesis and induced rapid influx of radiolabeled calcium, as well as tyrosine phosphorylation of numerous cellular proteins. Lower concentrations (0.1-1 microM) of HgCl2 that activated cell growth also induced a slow sustained rise in intracellular calcium in cells loaded with the calcium indicator dye fura-2, but did not produce detectable tyrosine phosphorylation of leukocyte proteins. These studies support the possibility that subtoxic doses of HgCl2 may inappropriately activate teleost leukocytes, potentially altering the processes that regulate the magnitude and specificity of the fish immune response to environmental pathogens.ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6.Figure 7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.