An orally administered, fixed-dose coformulation of sodium phenylbutyratetaurursodiol (PB-TURSO) significantly slowed functional decline in a randomized, placebo-controlled, phase 2 trial in ALS (CENTAUR). Herein we report results of a long-term survival analysis of participants in CENTAUR. In CENTAUR, adults with ALS were randomized 2:1 to PB-TURSO or placebo. Participants completing the 6-month (24-week) randomized phase were eligible to receive PB-TURSO in the open-label extension. An all-cause mortality analysis (35-month maximum follow-up post-randomization) incorporated all randomized participants. Participants and site investigators were blinded to treatment assignments through the duration of followup of this analysis. Vital status was obtained for 135 of 137 participants originally randomized in CENTAUR. Median overall survival was 25.0 months among participants originally randomized to PB-TURSO and 18.5 months among those originally randomized to placebo (hazard ratio, 0.56; 95% confidence interval, 0.34-0.92; P = .023). Initiation of PB-TURSO treatment at baseline resulted in a 6.5-month longer median survival as compared with placebo. Combined with results from CEN-TAUR, these results suggest that PB-TURSO has both functional and survival benefits in ALS.
Conflict of interest:FU is an inventor of 3 patents related to Wolfram syndrome treatment, US 9,891,231 "Soluble MANF in pancreatic beta-cell disorders, " and US 10,441,574 and US 10,695,324 "Treatment for Wolfram syndrome and other endoplasmic reticulum stress disorders. " JRM is an inventor on a patent and patent application relating to stem cell-derived pancreatic islets, US 10,030,229 "SC-β cells and compositions and methods for generating the same" and US application PCT/US2019/032643 "Methods and Compositions for Generating Cells of Endodermal Lineage and Beta Cells and Uses Thereof. " FU is a founder and president of CURE4WOLFRAM, Inc. JRM is a consultant for Sana Biotechnology. JC and JK are co-CEOs of and report personal fees from and equity holdings in Amylyx Pharmaceuticals Inc. JC and JK have 2 patents, "Compositions for improving cell viability and methods of use thereof" (US 9,872,865; US Patent 10,251,896; AU 2014242123; EP 14775675.3; and JP2016515575A) and "For improving the composition of cell viability and using the method for the composition" (CN105050593B), issued to Amylyx Pharmaceuticals Inc. JL reports personal fees from and equity holdings in Amylyx Pharmaceuticals Inc.
ALS is a rapidly progressive, fatal disorder caused by motor neuron degeneration, for which there is a great unmet therapeutic need. AMX0035, a combination of sodium phenylbutyrate (PB) and taurursodiol (TUDCA, Turso), has shown promising results in early ALS clinical trials, but its mechanisms of action remain to be elucidated. To obtain an unbiased landscape of AMX0035 effects we investigated the transcriptomic and metabolomic profiles of primary skin fibroblasts from sporadic ALS patients and healthy controls treated with PB, TUDCA, or PB-TUDCA combination (Combo). Combo changed many more genes and metabolites than either PB or TUDCA individually. Most changes were unique to Combo and affected the expression of genes involved in ALS-relevant pathways, such as nucleocytoplasmic transport, unfolded protein response, mitochondrial function, RNA metabolism, and innate immunity. Weighted gene coexpression network analysis showed that significant correlations between ALS gene expression modules and clinical parameters were abolished by Combo. This study is the first to explore the molecular effects of Combo in ALS patient-derived cells. It shows that Combo has a greater and distinct impact compared to the individual compounds and provides clues to drug targets and mechanisms of actions, which may underlie the benefits of this investigational drug combination.
Objective: ALS is a rapidly progressive, fatal disorder caused by motor neuron degeneration, for which there is a great unmet therapeutic need. AMX0035, a combination of sodium phenylbutyrate (PB) and taurursodiol (TUDCA, TURSO), has shown promising results in early ALS clinical trials, but its mechanisms of action remain to be elucidated. Therefore, our goal was to obtain an unbiased landscape of the molecular effects of AMX0035 in ALS patient-derived cells. Methods: We investigated the transcriptomic and metabolomic profiles of primary skin fibroblasts from sporadic ALS patients and healthy controls (n = 12/group) treated with PB, TUDCA, or PB-TUDCA combination (Combo). Data were evaluated with multiple approaches including differential gene expression and metabolite abundance, Gene Ontology and metabolic pathway analysis, weighted gene co-expression correlation analysis (WGCNA), and combined multiomics integrated analysis. Results: Combo changed many more genes and metabolites than either PB or TUDCA individually. Most changes were unique to Combo and affected the expression of genes involved in nucleocytoplasmic transport, unfolded protein response, mitochondrial function, RNA metabolism, and innate immunity. WGCNA showed significant correlations between ALS gene expression modules and clinical parameters that were abolished by Combo treatment. Interpretation: This study is the first to explore the molecular effects of Combo in ALS patient-derived cells. It shows that Combo has a greater and distinct impact compared with the individual compounds and provides clues to drug targets and mechanisms of action, which may underlie the benefits of this investigational drug combination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.