With the continued appeal and adoption of cloud computing, an assessment of cloud run costs and migration affordability prior to adoption would assist enterprises that have several legacy applications targeted for cloud migration. However, as cloud migrations have become more prevalent, many have been characterised by unsuccessful migration or application modernisation attempts. The primary reason behind the failed attempts is insufficient planning upfront, to identify which legacy applications are suitable to realise the benefits of public or private cloud, leading to time and cost overruns. There is a need for strategic decision making for application portfolios to mitigate the risks of cost overruns and migration delays. Thus, a Rough Order of Magnitude (ROM) of cloud run costs for an application portfolio is required in the planning phase as an input into IT governance. To obtain the ROM cloud run costs, it is necessary to baseline application data, preferably through automated discovery, and perform quantitative analysis of the applications. Therefore, we propose an approach to (a) baseline application data using Application Portfolio Profiling (APP), and (b) perform quantitative analysis of applications using an Application Portfolio Assessment (APA), to inform the legacy application migration decision. APP and APA are proposed as part of a Cloud Computing Considerations for Companies (CCCC) framework that enables an enterprise to make an informed decision regarding which legacy applications are to be migrated as part of enterprise Cloud Computing adoption. This decision is important because of the change in operating model, infrastructure requirements, hidden costs and commercial models inherent with cloud computing adoption. We validate the proposed framework through applying it to a real-world use case scenario that provides the necessary coverage to test the proposed framework.
Correct decision-making about the cloud platform architecture is crucial for the success of any cloud migration project; bad decisions can lead to undesirable consequences including project delays, budget overruns, application instability, below-par performance and creation of technical debt. Rule-Based Reasoning (RBR), a popular approach for solving clearly defined problems, can be used for cloud platform recommendation if a comprehensive set of requirements are available. However, the responsibility of decision-making is increasingly moving away from the hands of the technical subject matter experts, and into the hands of the business sponsors. Therefore, in this paper, we propose combining Case-Based Reasoning (CBR) with RBR to assist business sponsors in making strategic decisions between public, private and hybrid cloud with a high level of confidence even at the initial stages of the project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.