When using the diffusive gradients in thin-films (DGT) technique in well-stirred solutions, the diffusive boundary layer has generally been ignored on the assumption that it is negligibly thin compared to the total thickness of delta g, i.e., the sum of the thickness of the prefilter and diffusive gel. Deployment of devices with different diffusive layer thicknesses showed that the thickness of the DBL was approximately 0.23 mm in moderate to well-stirred solutions, but substantially thicker in poorly or unstirred solutions. Measurement of the distribution of Cd in the DGT resin gel at high spatial resolution (100 microm) using laser ablation inductively coupled plasma mass spectrometry showed that the effective sampling window had a larger diameter (2.20 cm) than the geometric diameter of the exposure window (2.00 cm). Lateral diffusion in the gel, which had previously been neglected, therefore increased the effective surface area of the device by approximately 20%. The concentrations measured by DGT agreed well with the known concentrations in standard solutions for all diffusion layer thicknesses, when the effective area and the appropriate diffusive boundary layer (DBL) were used. The extent of the error associated with neglecting the DBL and using the geometric window area depends on the gel layer thickness and the true thickness of the DBL, as determined by the deployment geometry and flow regime. When DGT measurements were made in well-stirred solutions using a 0.80-mm diffusive gel, the effect of neglecting the DBL and using the inappropriate geometric area offset each other, with the error being <+/-10%. For precise measurements, and especially work involving speciation or kinetic measurements, where DGT devices with different diffusive gel layer thicknesses are deployed, it is necessary to use the effective area and the appropriate DBL thickness in the full DGT equation, which allows for the use of layer-specific diffusion coefficients.
Measurements of trace metal species in situ in a softwater river, a hardwater lake, and a hardwater stream were compared to the equilibrium distribution of species calculated using two models, WHAM 6, incorporating humic ion binding model VI and visual MINTEQ incorporating NICA−Donnan. Diffusive gradients in thin films (DGT) and voltammetry at a gel integrated microelectrode (GIME) were used to estimate dynamic species that are both labile and mobile. The Donnan membrane technique (DMT) and hollow fiber permeation liquid membrane (HFPLM) were used to measure free ion activities. Predictions of dominant metal species using the two models agreed reasonably well, even when colloidal oxide components were considered. Concentrations derived using GIME were generally lower than those from DGT, consistent with calculations of the lability criteria that take into account the smaller time window available for the flux to GIME. Model predictions of free ion activities generally did not agree with measurements, highlighting the need for further work and difficulties in obtaining appropriate input data.
Trace metals were measured in situ in a freshwater river draining a peat catchment (DOC = 15 mg L(-1)) using diffusive gradients in thin-films (DGT) devices with a range of gel layer thicknesses (0.16-2.0 mm). The reciprocal of the accumulated mass of each metal varied linearly with the thickness of the diffusive layer. These plots allowed calculation of the thickness of an apparent diffusive boundary layer (ADBL). A constant value was obtained from the plots of Cd, Pb, and Zn. The observed increase in the ADBL for the other metals (Mn
Several techniques for speciation analysis of Cu, Zn, Cd, Pb, and Ni are used in freshwater systems and compared with respect to their performance and to the metal species detected. The analytical techniques comprise the following: (i) diffusion gradients in thin-film gels (DGT); (ii) gel integrated microelectrodes combined to voltammetric in situ profiling system (GIME−VIP); (iii) stripping chronopotentiometry (SCP); (iv) flow-through and hollow fiber permeation liquid membranes (FTPLM and HFPLM); (v) Donnan membrane technique (DMT); (vi) competitive ligand-exchange/stripping voltammetry (CLE−SV). All methods could be used both under hardwater and under softwater conditions, although in some cases problems with detection limits were encountered at the low total concentrations. The detected Cu, Cd, and Pb concentrations decreased in the order DGT ≥ GIME−VIP ≥ FTPLM ≥ HFPLM ≈ DMT (>CLE−SV for Cd), detected Zn decreased as DGT ≥ GIME−VIP and Ni as DGT > DMT, in agreement with the known dynamic features of these techniques. Techniques involving in situ measurements (GIME−VIP) or in situ exposure (DGT, DMT, and HFPLM) appear to be appropriate in avoiding artifacts which may occur during sampling and sample handling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.