The subcellular compartmentalization of kinase activity allows for regulation of distinct cellular processes involved in cell differentiation or survival. The PTEN-induced kinase-1 (PINK1) is a neuroprotective kinase localized to cytosolic and mitochondrial compartments. While mitochondrial targeting of PINK1 is important for its activities regulating mitochondrial homeostasis, the physiological role of the cytosolic pool of PINK1 remains unknown. Here, we demonstrate a novel role for cytosolic PINK1 in neuronal differentiation/neurite maintenance. Overexpression of wild-type PINK1, but not a catalytically inactive form of PINK1(K219M), promoted neurite outgrowth in SH-SY5Y cells and increased dendritic lengths in primary cortical and midbrain dopaminergic neurons. To identify the subcellular pools of PINK1 involved in promoting neurite outgrowth, we transiently transfected cells with PINK1 constructs designed to target PINK1 to the outer mitochondrial membrane (OMM-PINK1), or restrict PINK1 to the cytosol (ΔN111-PINK1). Both constructs blocked cell death associated with loss of endogenous PINK1. However, transient expression of ΔN111-PINK1, but not of OMM-PINK1 or ΔN111-PINK1(K219M), promoted dendrite outgrowth in primary neurons, and rescued the decreased dendritic arborization of PINK1-deficient neurons. Mechanistically, the cytosolic pool of PINK1 regulated neurite morphology through enhanced anterograde transport of dendritic mitochondria and amplification of PKA-related signaling pathways. Our data supports a novel role for PINK1 in regulating dendritic morphogenesis.
Interleukin-1β and Tumor Necrosis Factor α play related, but distinct, roles in immunity and disease. Our study revealed major mechanistic distinctions in the Toll-like receptor (TLR) signaling-dependent induction for the rapidly expressed genes (IL1B and TNF) coding for these two cytokines. Prior to induction, TNF exhibited pre-bound TATA Binding Protein (TBP) and paused RNA Polymerase II (Pol II), hallmarks of poised immediate-early (IE) genes. In contrast, unstimulated IL1B displayed very low levels of both TBP and paused Pol II, requiring the lineage-specific Spi-1/PU.1 (Spi1) transcription factor as an anchor for induction-dependent interaction with two TLR-activated transcription factors, C/EBPβ and NF-κB. Activation and DNA binding of these two pre-expressed factors resulted in de novo recruitment of TBP and Pol II to IL1B in concert with a permissive state for elongation mediated by the recruitment of elongation factor P-TEFb. This Spi1-dependent mechanism for IL1B transcription, which is unique for a rapidly-induced/poised IE gene, was more dependent upon P-TEFb than was the case for the TNF gene. Furthermore, the dependence on phosphoinositide 3-kinase for P-TEFb recruitment to IL1B paralleled a greater sensitivity to the metabolic state of the cell and a lower sensitivity to the phenomenon of endotoxin tolerance than was evident for TNF. Such differences in induction mechanisms argue against the prevailing paradigm that all IE genes possess paused Pol II and may further delineate the specific roles played by each of these rapidly expressed immune modulators.
Interleukin 1 (IL-1) has been implicated in the reorganization of the actin cytoskeleton. An expression vector encoding a PKB/Akt pleckstrin-homology domain fused to a fluorescent protein was used to detect phosphoinositide 3-kinase (PI 3-kinase) products. It was observed that PI 3-kinase was activated either by treatment with IL-1 or by expression of either TRAF6, Src, MyD88 or dominant-positive PI 3-kinase, and resulted in the formation of long filopodia-like cellular protrusions that appeared to branch at membrane sites consisting of clusters of phosphoinositide. This depended upon a TRAF6 polyproline motif and Src catalytic activity, and was blocked by inhibitors of PI 3-kinase, Src and Ras. Using both conventional and split fluorescent protein probes fused to expressed TRAF6 and Src in living cells, the polyproline sequence of TRAF6 and the Src-homology 3 (SH3) domain of Src were shown to be required for interaction between these two proteins. Interaction occurred within the cytoplasm, and not at either the cell membrane or cytoplasmic sequestosomes. In addition, co-transfection of vectors expressing fluorescent-protein-fused TRAF6 and non-fluorescent MyD88, IRAK1 and IRAK2 revealed an inverse correlation between increased sequestosome formation and activation of both PI 3-kinase and NF-κB. Although a key factor in TRAF6-dependent activation of PI 3-kinase, ectopic expression of Src was insufficient for NF-κB activation and, in contrast to NF-κB, was not inhibited by IRAK2.
Rapid induction of transcription is known to be mediated by factors which bind DNA following post-translational modification. We report here that non-tyrosine phosphorylated (NTP)-Stat1 is involved in a cooperative interaction with Spi-1/PU.1 and IRF8 to form a pre-associated, poised complex for IL1B gene induction. A double point mutation at a putative STAT binding site, which overlaps this composite Spi-1 x IRF8 site located in the LPS and IL-1 response element (LILRE), inhibited human IL1B LPS-dependent reporter activity to about 10 percent of the control wild type vector. Chromatin immunoprecipitation revealed stimulation-independent constitutive binding of IRF8, Spi-1 and NTP-Stat1 at the LILRE, while binding of C/EBP beta was activated at an adjacent C/EBP beta site after LPS stimulation. In contrast to Stat1, IRF8 was tyrosine phosphorylated following LPS treatment. Supporting the involvement of NTP-Stat1, LPS-induced IL1B reporter activity in monocytes was enhanced by ectopic expression of NTP-Stat1 Y701F. In contrast, co-expression of a Y211F IRF8 mutein functioned as a dominant-negative inhibitor of LPS-induced IL1B reporter activity. In vitro DNA binding using extracts from LPS-treated monocytes confirmed that the LILRE enhancer constitutively binds a trimolecular complex containing IRF8, Spi-1 and NTP-Stat1. Binding studies using in vitro-expressed proteins revealed that NTP-Stat1 enhanced the binding of Spi-1 and IRF8 to the LILRE. Co-expression of TRAF6, an LPS surrogate, with Spi-1 and IRF8 enhanced IL1B reporter activity in HEK293R cells, which was dramatically reduced when Y211F IRF8 was co-expressed. These results suggest that the rapid transcriptional induction of an important inflammatory gene is dependent upon constitutive cooperative binding of a Spi-1 x IRF8 x NTP-Stat1 complex to the LILRE, which primes the gene for immediate induction following IRF8 phosphorylation. Phosphorylation of chromatin pre-associated factors like IRF8 may be an important strategy for the rapid transcriptional activation of genes involved in innate immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.