This paper describes a method for improving the generalization performance of bagging ensemble by means of using Bayesian approach. We examine the Bayesian prediction using bagging leaning machines for regression problems, and show a method to reduce the generalization loss defined by the square error of the prediction for test data. We examine and validate the effectiveness via numerical experiments using the CAN2s as learning machines, where the CAN2 is a neural net for learning efficient piecewise linear approximation of nonlinear functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.