We present a systematic numerical relativity study of the mass ejection and the associated electromagnetic transients and nucleosynthesis from binary neutron star (NS) mergers. We find that a few 10−3 M ⊙ of material is ejected dynamically during the mergers. The amount and the properties of these outflows depend on binary parameters and on the NS equation of state (EOS). A small fraction of these ejecta, typically ∼10−6 M ⊙, is accelerated by shocks formed shortly after merger to velocities larger than 0.6c and produces bright radio flares on timescales of weeks, months, or years after merger. Their observation could constrain the strength with which the NSs bounce after merger and, consequently, the EOS of matter at extreme densities. The dynamical ejecta robustly produce second and third r-process peak nuclei with relative isotopic abundances close to solar. The production of light r-process elements is instead sensitive to the binary mass ratio and the neutrino radiation treatment. Accretion disks of up to ∼0.2 M ⊙ are formed after merger, depending on the lifetime of the remnant. In most cases, neutrino- and viscously driven winds from these disks dominate the overall outflow. Finally, we generate synthetic kilonova light curves and find that kilonovae depend on the merger outcome and could be used to constrain the NS EOS.
Numerical-relativity simulations for the merger of binary neutron stars are performed for a variety of equations of state (EOSs) and for a plausible range of the neutron-star mass, focusing primarily on the properties of the material ejected from the system. We find that a fraction of the material is ejected as a mildly relativistic and mildly anisotropic outflow with the typical and maximum velocities ∼ 0.15 -0.25c and ∼ 0.5 -0.8c (where c is the speed of light), respectively, and that the total ejected rest mass is in a wide range 10 −4 -10 −2 M , which depends strongly on the EOS, the total mass, and the mass ratio. The total kinetic energy ejected is also in a wide range between 10 49 and 10 51 ergs. The numerical results suggest that for a binary of canonical total mass 2.7M , the outflow could generate an electromagnetic signal observable by the planned telescopes through the production of heavy-element unstable nuclei via the r-process [1][2][3] or through the formation of blast waves during the interaction with the interstellar matter [4], if the EOS and mass of the binary are favorable ones.
The binary neutron-star merger GW170817 was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of about 41 megaparsecs from Earth. The radio and X-ray afterglows of GW170817 exhibited delayed onset, a gradual increase in the emission with time (proportional to t) to a peak about 150 days after the merger event, followed by a relatively rapid decline. So far, various models have been proposed to explain the afterglow emission, including a choked-jet cocoon and a successful-jet cocoon (also called a structured jet). However, the observational data have remained inconclusive as to whether GW170817 launched a successful relativistic jet. Here we report radio observations using very long-baseline interferometry. We find that the compact radio source associated with GW170817 exhibits superluminal apparent motion between 75 days and 230 days after the merger event. This measurement breaks the degeneracy between the choked- and successful-jet cocoon models and indicates that, although the early-time radio emission was powered by a wide-angle outflow (a cocoon), the late-time emission was most probably dominated by an energetic and narrowly collimated jet (with an opening angle of less than five degrees) and observed from a viewing angle of about 20 degrees. The imaging of a collimated relativistic outflow emerging from GW170817 adds substantial weight to the evidence linking binary neutron-star mergers and short γ-ray bursts.
Merging neutron stars offer an excellent laboratory for simultaneously studying strong-field gravity and matter in extreme environments. We establish the physical association of an electromagnetic counterpart (EM170817) with gravitational waves (GW170817) detected from merging neutron stars. By synthesizing a panchromatic data set, we demonstrate that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis. The weak gamma rays seen in EM170817 are dissimilar to classical short gamma-ray bursts with ultrarelativistic jets. Instead, we suggest that breakout of a wide-angle, mildly relativistic cocoon engulfing the jet explains the low-luminosity gamma rays, the high-luminosity ultraviolet-optical-infrared, and the delayed radio and x-ray emission. We posit that all neutron star mergers may lead to a wide-angle cocoon breakout, sometimes accompanied by a successful jet and sometimes by a choked jet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.