Sphingobium sp. strain SYK-6 is able to degrade various lignin-derived aromatic compounds including ferulate, vanillate, and syringate. In the SYK-6 cells, ferulate is converted to vanillin and acetyl-coenzyme A (acetyl-CoA) through the reactions catalyzed by feruloyl-CoA synthetase and feruloyl-CoA hydratase/lyase encoded by ferA and ferB, respectively. Here, we characterized the transcriptional regulation of ferBA controlled by a MarR-type transcriptional regulator, FerC. The ferC gene is located upstream of ferB. Reverse transcription (RT)-PCR analysis suggested that the ferBA genes form an operon. Quantitative RT-PCR analyses of SYK-6 and its mutant cells revealed that the transcription of the ferBA operon is negatively regulated by FerC, and feruloyl-CoA was identified as an inducer. The transcription start site of ferB was mapped at 30 nucleotides upstream from the ferB initiation codon. Purified His-tagged FerC bound to the ferC-ferB intergenic region. This region contains an inverted repeat sequence, which overlaps with a part of the -10 sequence and the transcriptional start site of ferB. The binding of FerC to the operator sequence was inhibited by the addition of feruloyl-CoA, indicating that FerC interacts with feruloyl-CoA as an effector molecule. Furthermore, hydroxycinnamoyl-CoAs, including p-coumaroyl-CoA, caffeoyl-CoA, and sinapoyl-CoA also acted as effector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.