Available array-type, chemical-sensing image sensors generally only provide on/off responses to the sensed chemical and produce qualitative information. Therefore, there is a need for an array sensor design that can detect chemical concentration changes to produce quantitative, event-sensitive information. In this study, a 128 × 128 array-type image sensor was modified and applied to imaging of biogenic amines released from stimulated rat mast cells, providing recordable responses of the time course of their release and diffusion. The imaging tool was manufactured by an integrated circuit process, including complementary metal oxide semiconductor and charge-coupled device technology. It was fitted with an amine-sensitive membrane prepared from plasticized poly(vinyl chloride) including a hydrophobic anion, which allowed the sensor to detect amines, such as histamine and serotonin, in Tyrode's solution. As mast cells were larger in diameter than the pixel hollows, some pixels monitored amines released from single cells. The image from the array responses yielded sequential snapshots at a practical frame speed that followed amine concentration changes over time, after mast cell amine release was synchronized by chemical stimulation. This sensor was shown to be sensitive to amine release at very low stimulus concentrations and was able to detect localized spots of high amine release. The entire time course of the amine release was recorded, including maximum concentration at 4-6 s and signal disappearance at 30 s after stimulation. With further development, this sensor will increase opportunities to study a variety of biological systems, including neuronal chemical processes.
Triple-negative breast cancer (TNBC), a highly metastatic subtype of breast cancer, and it has the worst prognosis among all subtypes of breast cancer. However, no effective systematic therapy is currently available for TNBC metastasis. Therefore, novel therapies targeting the key molecular mechanisms involved in TNBC metastasis are required. The present study examined whether the expression levels of human epidermal growth factor receptor 3 (HER3) were associated with the metastatic phenotype of TNBC, and evaluated the potential of HER3 as a therapeutic target in vitro and in vivo . A new highly metastatic 4T1 TNBC cell line, termed 4T1-L8, was established. The protein expression levels in 4T1-L8 cells were measured using luminex magnetic bead assays and western blot analysis. The HER3 expression levels and distant metastasis-free survival (DMFS) in TNBC were analyzed using Kaplan-Meier Plotter. Transwell migration and invasion assays were performed to detect migration and invasion. The anti-metastatic effects were determined in an experimental mouse model of metastasis. The results revealed that the increased expression of the HER3/Akt/mTOR pathway was associated with a greater level of cell migration, invasion and metastasis of TNBC cells. In addition, it was found that high expression levels of HER3 were associated with a poor DMFS. The inhibition of the HER3/Akt/mammalian target of rapamycin (mTOR) pathway decreased the migration, invasion and metastasis of TNBC cells by decreasing the expression of C-X-C chemokine receptor type 4 (CXCR4). Furthermore, treatment of metastatic TNBC cells with everolimus inhibited their migration, invasion and metastasis by decreasing CXCR4 expression. Thus, targeting the HER3/Akt/mTOR pathway opens up a new avenue for the development of therapeutics against TNBC metastasis; in addition, everolimus may prove to be an effective therapeutic agent for the suppression of TNBC metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.