Background:We analyzed factors associated with worsened paresis in a large series of patients with brain lesions located within or near the primary motor area (M1) to establish protocols for safe, awake craniotomy of eloquent lesions.Methods:We studied patients with brain lesions involving M1, the premotor area (PMA) and the primary sensory area (S1), who underwent awake craniotomy (n = 102). In addition to evaluating paresis before, during, and one month after surgery, the following parameters were analyzed: Intraoperative complications; success or failure of awake surgery; tumor type (A or B), tumor location, tumor histology, tumor size, and completeness of resection.Results:Worsened paresis at one month of follow-up was significantly associated with failure of awake surgery, intraoperative complications and worsened paresis immediately after surgery, which in turn was significantly associated with intraoperative worsening of paresis. Intraoperative worsening of paresis was significantly related to preoperative paresis, type A tumor (motor tract running in close proximity to and compressed by the tumor), tumor location within or including M1 and partial removal (PR) of the tumor.Conclusions:Successful awake surgery and prevention of deterioration of paresis immediately after surgery without intraoperative complications may help prevent worsening of paresis at one month. Factors associated with intraoperative worsening of paresis were preoperative motor deficit, type A and tumor location in M1, possibly leading to PR of the tumor.
The neural manifold in state space represents the mass neural dynamics of a biological system. A challenging modern approach treats the brain as a whole in terms of the interaction between the agent and the world. Therefore, we need to develop a method for this global neural workspace. The current study aimed to visualize spontaneous neural trajectories regardless of their measuring modalities (electroencephalography [EEG], functional magnetic resonance imaging [fMRI], and magnetoencephalography [MEG]). First, we examined the possible visualization of EEG manifolds. These results suggest that a spherical surface can be clearly observed within the spatial similarity space. Once valid (e.g., differentiable) and useful (e.g., low-dimensional) manifolds are obtained, the nature of the sphere, such as shape and size, becomes a possible target of interest. Because these should be practically useful, we suggest advantages of the EEG manifold (essentially continuous) or the state transition matrix (coarse-grained discrete). Finally, because our basic procedure is modality-independent, MEG and fMRI manifolds were also compared. These results strongly suggest the need to update our understanding of neural mass representations to include robust "global" dynamics.
Online stabilization of human standing posture utilizes multisensory afferences (e.g., vision). Whereas visual feedback of spontaneous postural sway can stabilize postural control especially when observers concentrate on their body and intend to minimize postural sway, the effect of intentional control of visual feedback on postural sway itself remains unclear. This study assessed quiet standing posture in healthy adults voluntarily controlling or merely observing visual feedback. The visual feedback (moving square) had either low or high gain and was either horizontally flipped or not. Participants in the voluntary-control group were instructed to minimize their postural sway while voluntarily controlling visual feedback, whereas those in the observation group were instructed to minimize their postural sway while merely observing visual feedback. As a result, magnified and flipped visual feedback increased postural sway only in the voluntary-control group. Furthermore, regardless of the instructions and feedback manipulations, the experienced sense of control over visual feedback positively correlated with the magnitude of postural sway. We suggest that voluntarily controlled, but not merely observed, visual feedback is incorporated into the feedback control system for posture and begins to affect postural sway.
These results suggest that awake surgery for vestibular schwannomas is associated with low patient morbidity, including with respect to hearing and facial nerve function.
We analyzed factors associated with worsened paresis at 1-month follow-up in patients with brain tumors located in the primary motor area (M1) to establish protocols for safe awake craniotomy for M1 lesions. Patients with M1 brain tumors who underwent awake surgery in our hospital ( = 61) were evaluated before, during, and immediately and 1 month after surgery for severity of paresis, tumor location, extent of resection, complications, preoperative motor strength, histology, and operative strategies (surgery stopped or continued after deterioration of motor function). Worsened paresis at 1-month follow-up was significantly associated with worsened paresis immediately after surgery and also with operative strategy. Specifically, when motor function deteriorated during awake surgery and did not recover within 5 to 10 minutes, no deterioration was observed at 1-month follow-up in cases where we stopped surgery, whereas 6 of 13 cases showed deteriorated motor function at 1-month follow-up in cases where we continued surgery. Stopping tumor resection on deterioration of motor function during awake surgery may help prevent worsened paresis at 1-month follow-up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.