The molecular structure of helical supramolecular dendrimers generated from self-assembling dendrons and dendrimers and from self-organizable dendronized polymers was elucidated for the first time by the simulation of the X-ray diffraction patterns of their oriented fibers. These simulations were based on helical diffraction theory applied to simplified atomic helical models, followed by Cerius2 calculations based on their complete molecular helical structures. Hundreds of samples were screened until a library containing 14 supramolecular dendrimers and dendronized polymers provided a sufficient number of helical features in the X-ray diffraction pattern of their oriented fibers. This combination of techniques provided examples of single-9(2) and -11(3) helices, triple-6(1), -8(1), -9(1), and -12(1) helices, and an octa-32(1) helix that were assembled from crownlike dendrimers, hollow and nonhollow supramolecular crownlike dendrimers, hollow and nonhollow supramolecular disklike dendrimers, and hollow and nonhollow supramolecular and macromolecular helicene-like architectures. The method elaborated here for the determination of the molecular helix structure was transplanted from the field of structural biology and will be applicable to other classes of synthetic helical assemblies. The determination of the molecular structure of helical supramolecular assemblies is expected to provide an additional level of precision in the design of helical functional assemblies resembling those from biological systems.
Dithienylethenes with low decoloration quantum yields and thermal reversibility at high temperature above 100 degrees C were prepared. Introduction of bulky alkoxy substituents at 2- and 2'-positions of the thiophene rings strongly suppressed the cycloreversion quantum yields. The quantum yields were lower than 10(-3), and the photogenerated color remained stable enough under room light. On the other hand, the bulky alkoxy substituent decreased the thermal stability of the colored closed-ring isomers at high temperature. The color of the dithienylethene with cyclohexyloxy substituents faded out in less than 1 min at 160 degrees C.
Many natural biomacromolecules are homochiral and are built from constituents possessing identical handedness. The construction of synthetic molecules, macromolecules, and supramolecular structures with tailored stereochemical sequences can detail the relationship between chirality and function and provide insight into the process that leads to the selection of handedness and amplification of chirality. Dendritic dipeptides, previously reported from our laboratory, self-assemble into helical porous columns and serve as fundamental mimics of natural porous helix-forming proteins and supramolecular polymers. Herein, the synthesis of all stereochemical permutations of a self-assembling dendritic dipeptide including homochiral, heterochiral, and differentially racemized variants is reported. A combination of CD/UV-vis spectroscopy in solution and in film, X-ray diffraction, and differential scanning calorimetry studies in solid state established the role of the stereochemistry of the dipeptide on the thermodynamics and mechanism of self-assembly. It was found that the highest degree of stereochemical purity, enantiopure homochiral dendritic dipeptides, exhibits the most thermodynamically favorable self-assembly process in solution corresponding to the greatest degree of helical order and intracolumnar crystallization in solid state. Reducing the stereochemical purity of the dendritic dipeptide through heterochirality or by partially or fully racemizing the dendritic dipeptide destructively interferes with the self-assembly process. All dendritic dipeptides were shown to coassemble into single columns regardless of their stereochemistry. Because these columns exhibit no deracemization, the thermodynamic advantage of enantiopurity and homochirality suggests a mechanism for stereochemical selection and chiral amplification.
Bile salts form aggregates in aqueous solutions which were shown to efficiently solubilize aqueous insoluble photochromic compounds. Photochromic switching was observed for a spiropyran and a diarylethene. In the case of the spiropyran, the incorporation into the bile salt aggregate led to improved hydrolytic stability and changes in thermal rate constants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.