The role of intracellular magnesium ions is of high interest in the fields of pharmacology and cellular biology. To accomplish the dynamic and three-dimensional imaging of intracellular Mg2+, there is a strong desire for the development of optimized Mg2+ fluorescent probes. In this paper we describe the design, synthesis, and cellular application of the three novel Mg2+ fluorescent probes KMG-101, -103, and -104. The compounds of this series feature a charged beta-diketone as a binding site specific for Mg2+ and a fluorescein residue as the fluorophore that can be excited with an Ar+ laser such as is widely used in confocal scanning microscopy. This molecular design leads to an intensive off-on-type fluorescent response toward Mg2+ ions. The two fluorescent probes KMG-103 and -104 showed suitable dissociation constants (Kd,Mg2+ = 2 mM) and nearly a 10-fold fluorescence enhancement over the intracellular magnesium ion concentration range (0.1-6 mM), allowing high-contrast, sensitive, and selective Mg2+ measurements. For intracellular applications, the membrane-permeable probe KMG-104AM was synthesized and successfully incorporated into PC12 cells. Upon application of the mitochondria uncoupler FCCP to the probe-incorporated cells, the resulting increase in the free magnesium ion concentration could be followed over time. By using a confocal microscope, the intracellular 3D magnesium ion concentration distributions were satisfactorily observed.
To determine the nature of intracellular Mg2+ stores and Mg2+ release mechanisms in differentiated PC12 cells, Mg2+ and Ca2+ mobilizations were measured simultaneously in living cells with KMG-104, a fluorescent Mg2+ indicator, and fura-2, respectively. Treatment with the mitochondrial uncoupler, carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), increased both the intracellular Mg2+ concentration ([Mg2+]i) and the [Ca2+]i in these cells. Possible candidates as intracellular Mg2+ stores under these conditions include intracellular divalent cation binding sites, endoplasmic reticulum (ER), Mg-ATP and mitochondria. Given that no change in [Mg2+]i was induced by caffeine application, intracellular IP3 or Ca2+ liberated by photolysis, it appears that no Mg2+ release mechanism thus exists that is mediated via the action of Ca2+ on membrane-bound receptors in the ER or via the offloading of Mg2+ from binding sites as a result of the increased [Ca2+]i. FCCP treatment for 2 min did not alter the intracellular ATP content, indicating that Mg2+ was not released from Mg-ATP, at least in the first 2 min following exposure to FCCP. FCCP-induced [Mg2+]i increase was observed at mitochondria localized area, and vice versa. These results suggest that the mitochondria serve as the intracellular Mg2+ store in PC12 cell. Simultaneous measurements of [Ca2+]i and mitochondrial membrane potential, and also of [Ca2+]i and [Mg2+]i, revealed that the initial rise in [Mg2+]i followed that of mitochondrial depolarization for several seconds. These findings show that the source of Mg2+ in the FCCP-induced [Mg2+]i increase in PC12 cells is mitochondria, and that mitochondrial depolarization triggers the Mg2+ release.
This result shows that Mg-ATP is not a Mg store. Since, when cells were treated by an uncoupler FCCP (3 microM), [Mg]i and [Ca]i increased, we concluded that mitochondria participate in maintenance of intracellular Mg stores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.