The nucleotide sequence of Protobothrops flavoviridis (Pf) 30534 bp genome segment which contains genes encoding small serum proteins (SSPs) was deciphered. The genome segment contained five SSP genes (PfSSPs), PfSSP-4, PfSSP-5, PfSSP-1, PfSSP-2, and PfSSP-3 in this order and had characteristic configuration and constructions of the particular nucleotide sequences inserted. Comparison between the configurations of the inserted chicken repeat-1 (CR1) fragments of P. flavoviridis and Ophiophagus hannah (Oh) showed that the nucleotide segment encompassing from PfSSP-1 to PfSSP-2 was inverted. The inactive form of PfSSP-1, named PfSSP-1δ(Ψ), found in the intergenic region (I-Reg) between PfSSP-5 and PfSSP-1 had also been destroyed by insertions of the plural long interspersed nuclear elements (LINEs) and DNA transposons. The L2 LINE inserted into the third intron or the particular repetitive sequences inserted into the second intron structurally divided five PfSSPs into two subgroups, the Long SSP subgroup of PfSSP-1, PfSSP-2 and PfSSP-5 or the Short SSP subgroup of PfSSP-3 and PfSSP-4. The mathematical analysis also showed that PfSSPs of the Long SSP subgroup evolved alternately in an accelerated and neutral manner, whereas those of the Short SSP subgroup evolved in an accelerated manner. Moreover, the ortholog analysis of SSPs of various snakes showed that the evolutionary emerging order of SSPs was as follows: SSP-5, SSP-4, SSP-2, SSP-1, and SSP-3. The unique interpretation about accelerated evolution and the novel idea that the transposable elements such as LINEs and DNA transposons are involved in maintaining the host genome besides its own transposition natures were proposed.
Small serum proteins (SSPs) are low-molecular-weight proteins in snake serum with affinities for various venom proteins. Five SSPs, PfSSP-1 through PfSSP-5, have been reported in Protobothrops flavoviridis (“habu”, Pf) serum so far. Recently, we reported that the five genes encoding these PfSSPs are arranged in tandem on a single chromosome. However, the physiological functions and evolutionary origins of the five SSPs remain poorly understood. In a detailed analysis of the habu draft genome, we found a gene encoding a novel SSP, SSP-6. Structural analysis of the genes encoding SSPs and their genomic arrangement revealed the following: (1) SSP-6 forms a third SSP subgroup; (2) SSP-5 and SSP-6 were present in all snake genomes before the divergence of non-venomous and venomous snakes, while SSP-4 was acquired only by venomous snakes; (3) the composition of paralogous SSP genes in snake genomes seems to reflect snake habitat differences; and (4) the evolutionary emergence of SSP genes is probably related to the physiological functions of SSPs, with an initial snake repertoire of SSP-6 and SSP-5. SSP-4 and its derivative, SSP-3, as well as SSP-1 and SSP-2, appear to be venom-related and were acquired later.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.