Regulatory T cells (Tregs) are critical mediators of immune homeostasis and hold significant promise in the quest for transplantation tolerance. Progress has now reached a critical threshold as techniques for production of clinical therapies are optimised and Phase I/II clinical trials are in full swing. Initial safety and efficacy data are being reported, with trials assessing a number of different strategies for the introduction of Treg therapy. It is now more crucial than ever to elucidate further the function and behaviour of Tregsin vivoand ensure safe delivery. This review will discuss the current state of the art and future directions in Treg therapy.
Successful induction of allograft tolerance has been achieved in nonhuman primates (NHPs) and humans via induction of transient hematopoietic chimerism. Since allograft tolerance was achieved in these recipients without durable chimerism, peripheral mechanisms are postulated to play a major role. Here, we report our studies of T cell immunity in NHP recipients that achieved long-term tolerance versus those that rejected the allograft (AR). All kidney, heart, and lung transplant recipients underwent simultaneous or delayed donor bone marrow transplantation (DBMT) following conditioning with a nonmyeloablative regimen. After DBMT, mixed lymphocyte culture with CFSE consistently revealed donor-specific loss of CD8+ T cell responses in tolerant (TOL) recipients, while marked CD4+ T cell proliferation in response to donor antigens was found to persist. Interestingly, a significant proportion of the proliferated CD4+ cells were FOXP3+ in TOL recipients, but not in AR or naive NHPs. In TOL recipients, CD4+FOXP3+ cell proliferation against donor antigens was greater than that observed against third-party antigens. Finally, the expanded Tregs appeared to be induced Tregs (iTregs) that were converted from non-Tregs. These data provide support for the hypothesis that specific induction of iTregs by donor antigens is key to long-term allograft tolerance induced by transient mixed chimerism.
IL-2 is a known potent T cell growth factor that amplifies lymphocyte responses in vivo. This capacity has led to the use of high dose IL-2 to enhance T cell immunity in patients with AIDS or cancer. However, more recent studies have indicated that IL-2 is also critical for the development and peripheral expansion of regulatory T cells (Tregs). In the current study, low dose IL-2 (1million unit/m2 BSA/day) was administered to expand Tregs in vivo in naïve nonhuman primates. Our study demonstrated that low dose IL-2 therapy significantly expanded peripheral blood CD4+ and CD8+ Tregs in vivo with limited expansion of non-Treg cells. These expanded Tregs are mainly CD45RA- Foxp3 high activated Tregs and demonstrated potent immunosuppressive function in vitro. The results of this pre-clinical study can serve as a basis to develop Treg immunotherapy, which has significant therapeutic potential in organ/cellular transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.