The cell surface glycoprotein CD44 has various types of splicing variants, which contribute to its multiple distinct cellular functions. Recently, it was reported that the CD44v8‐10 isoform interacts with the system Xc(‐) transporter‐related protein (xCT), and inhibits the accumulation of reactive oxygen species by promoting the synthesis of the antioxidant glutathione in human tumour cells. In this study, we investigated the expression and function of CD44 variants and xCT in canine tumours. From semi‐quantitative reverse transcription polymerase chain reaction analysis, the mRNA expression of the CD44v8‐10 isoform was observed in canine tumour tissues as well as human cases. The overexpression of CD44v8‐10 may promote the synthesis of glutathione and enhance the resistance to radiation of canine breast tumour cells. Furthermore, canine xCT mRNA expression was significantly upregulated in the canine breast tumour tissues as compared to the normal tissues surrounding the tumours. To investigate the function of canine xCT, we treated canine tumour cells with the xCT inhibitor sulfasalazine. Consequently, the sulfasalazine‐treated cells were more sensitive to oxidative stress than the non‐treated cells. Taken together, these results suggested that CD44v8‐10 and xCT play important roles in the therapy resistance of canine tumours as well as human tumours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.