Water is an attractive candidate for condensable propellants owing to its availability, handleability, and sustainability. This study proposes the use of water vapor as a propellant for a low-power Hall thruster, and experimentally demonstrates the feasibility of this proposal. Based on the performance estimation from the plume diagnostics, a thrust-to-power ratio of 19 mN/kW, specific impulse of 550–860 s, and anode efficiency of 5–8 % were obtained at an anode power of 233–358 W. From further efficiency analysis, the mass utilization efficiency of water was found to be the most deteriorated among the internal efficiencies compared to the conventional xenon propellant, which was consistent with the expectations from a small discharge current oscillation, large beam divergence, and increase in low-energy ions. Moreover, additional power loss via reactions unique to polyatomic molecules was indicated by evaluation of the ionization cost. In this experiment, the mass utilization efficiency was improved with an increase in the anode voltage from 200 to 240 V without degradation of the power utilization. This suggests that operating at a higher voltage is more suitable for a water-vapor Hall thruster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.