In the last decade, academic and industrial researchers have focused on persistent memory because of the development of the first practical product, Intel Optane. One of the main challenges of persistent memory programming is to guarantee consistent durability over separate memory addresses, and Wang et al. proposed a persistent multi-word compare-and-swap (PMwCAS) algorithm to solve this problem. However, their algorithm contains redundant compare-and-swap (CAS) and cache flush instructions and does not achieve sufficient performance on manycore CPUs. This paper proposes a new algorithm to improve performance on many-core CPUs by removing useless CAS/flush instructions from PMwCAS operations. We also exclude dirty flags, which help ensure consistent durability in the original algorithm, from our algorithm using PMwCAS descriptors as write-ahead logs. Experimental results show that the proposed method is up to ten times faster than the original algorithm and suggests several productive uses of PMwCAS operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.