Many experiential and clinical trials in cancer treatment show that a combination of immune checkpoint inhibitor with another agent can improve the tumor reduction. Anti Programmed death 1 (Anti-PD-1) is one of these immune checkpoint inhibitors that re-activate immune cells to inhibit tumor growth. In this work, we consider a combination treatment of anti-PD-1 and Interleukin-27 (IL-27). IL-27 has anti-cancer functions to promote the development of Th1 and CD8$^+$ T cells, but it also upregulates the expression of PD-1 and Programmed death ligand 1 (PD-L1) to inactivate these T cells. Thus, the functions of IL-27 in tumor growth is controversial. Hence, we create a simplified mathematical model to investigate whether IL-27 is pro-cancer or anti-cancer in the combination with anti-PD-1 and to what degree anti-PD-1 improves the efficacy of IL-27. Our synergy analysis for the combination treatment of IL-27 and anti-PD-1 shows that (i) ant-PD-1 can efficiently improve the treatment efficacy of IL-27; and (ii) there exists a monotone increasing function $F_c(G)$ depending on the treatment efficacy of anti-PD-1 $G$ such that IL-27 is an efficient anti-cancer agent when its dose is smaller than $F_c(G)$, whereas IL-27 is a pro-cancer agent when its dose is higher than $F_c(G)$. Our analysis also provides the existence and the local stability of the trivial, non-negative, and positive equilibria of the model. Combining with simulation, we discuss the effect of the IL-27 dosage on the equilibria and find that the T cells and IFN-$\gamma$ could vanish and tumor cells preserve, when the production rate of T cells by IL-27 is low or the dosage of IL-27 is low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.