The small multidrug resistance (SMR) protein family is a bacterial multidrug transporter family. As suggested by their title, SMR proteins are composed of four transmembrane alpha-helices of approximately 100-140 amino acids in length. Since their designation as a family, many homologues have been identified and characterized both structurally and functionally. In this review the topology, structure, drug resistance, drug binding, and transport mechanisms of the entire SMR protein family are examined. Additionally, updated bioinformatic analysis of predicted and characterized SMR protein family members was also conducted. Based on SMR sequence alignments and phylogenetic analysis of current members, we propose that this small multidrug resistance transporter family should be expanded into three subclasses: (i) the small multidrug pumps (SMP), (ii) suppressor of groEL mutation proteins (SUG), and a third group (iii) paired small multidrug resistance proteins (PSMR). The roles of these three SMR subclasses are examined, and the well-characterized members, such as Escherichia coli EmrE and SugE, are described in terms of their function and structural organization.
The twin-arginine translocase (Tat) system is used by many bacteria to move proteins across the cytoplasmic membrane. Tat substrates are prefolded and contain a conserved SRRxFLK twin-arginine (RR) motif at their N termini. Many Tat substrates in Escherichia coli are cofactor-containing redox enzymes that have specific chaperones called redox enzyme maturation proteins (REMPs). Here we characterized the interactions between 10 REMPs and 15 RR peptides of known and predicted Tat-specific redox enzyme subunits. A combination of in vitro and in vivo experiments demonstrated that some REMPs were specific to a redox enzyme(s) of similar function, whereas others were less specific and bound peptides of unrelated enzymes. Results from Biacore surface plasmon resonance (SPR) and bacterial two-hybrid experiments identified interactions in addition to those found in far-Western experiments, suggesting that conformational freedom and/or other cellular factors may be required. Furthermore, we show that the interaction of the two prevents both from being proteolytically degraded in vivo, and kinetic data from SPR show up to 10-fold-tighter binding to the expected RR substrate when multiple binding partners existed. Investigations using full-length sequences of the RR proteins showed that the mature portion for some redox enzyme subunits is required for detection of the interactions. Sequence alignments among the REMPs and RR peptides indicated that homology between the REMPs and the hydrophobic regions following the RR motifs in the peptides correlates to cross-recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.