Hemoglobin (Hb) adducts have been used as biomarkers for the internal exposure to chemicals. Simultaneous exposure to chemicals that bond with the N-terminal valine of Hb to form adducts, such as glycidol, acrylamide, and glucose, may affect the formation of the individual Hb adducts. In this study, various factors influencing the formation of chemical–Hb adducts were analyzed using in vitro and in vivo systems. In the in vitro assays, the formation of glycidol– and acrylamide–Hb adducts was altered in the presence of glucose, serum albumin, and other chemicals. In contrast, in the in vivo experiments, glycidol– and acrylamide–Hb adduct formation was unchanged in mice exposed to glycidol and acrylamide. The interaction between glycidol and acrylamide with residues other than the N-terminal valine of Hb was analyzed using the protein thermal shift assay. Glycidol and acrylamide also interacted with amino acid residues other than the N-terminal valine of Hb. The presence of other blood components, such as amino acids, may affect the formation of chemical–Hb adducts. Further research is expected to elucidate the remaining unknown factors that affect the formation of chemical–Hb adducts.
Patients with diabetes are known to be more susceptible to infections following the establishment of Staphylococcus aureus in their nasal passages and on their skin. The present study evaluated the effects of staphylococcal enterotoxin A (SEA) on the immune responses of spleen cells derived from diabetic mice, and examined the effects of polyphenols, catechins, and nobiletin on inflammation-related gene expression associated with the immune response. (−)-Epigallocatechin gallate (EGCG), possessing hydroxyl groups, interacted with SEA, whereas nobiletin, possessing methyl groups, did not interact with SEA. The exposure of spleen cells derived from diabetic mice to SEA enhanced the expression of interferon gamma, suppressor of cytokine signaling 1, signal transducer and activator of transcription 3, interferon-induced transmembrane protein 3, Janus kinase 2, and interferon regulatory factor 3, suggesting that SEA sensitivity is variable in the development of diabetes. Both EGCG and nobiletin changed the expression of genes related to SEA-induced inflammation in spleen cells, suggesting that they inhibit inflammation through different mechanisms. These results may lead to a better understanding of the SEA-induced inflammatory response during diabetogenesis, and the establishment of methods to control these effects with polyphenols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.