Global changes are inducing migratory birds to advance their annual cycle. However, changes in the time of arrival at their breeding grounds have significant fitness implications. This study aims to identify factors affecting the variability in arrival time of migratory white storks (Ciconia ciconia L.) and to determine if their arrival at North African breeding grounds is occurring earlier. We monitored the arrival of ringed white storks at a breeding colony in Algeria between 2017 and 2021. The birds arrived at this breeding colony over an extended period spanning mid-December to mid-June each year. We found that stork arrival was negatively correlated with age and year of arrival, with older birds arriving first and stragglers consisting of first- and second-year birds arriving later. Notably, arrivals have been shifting toward earlier dates at this breeding ground. Furthermore, cluster analysis of arrival dates for each age-class revealed two distinct groups comprising early and late arrivals. Advancement of the annual cycle of the North African white stork population is consistent with phenological shifts induced by global changes and that have been recorded globally in a wide range of living organisms.
1. Alpine grasslands above the treeline are severely threatened by climate change, mainly due to forest expansion driven by warmer conditions. Analogous lowland grasslands experience severe reductions due to land-use abandonment and forest encroachment. 2. To address how climate change impacted open-areas insects, we used Parnassius apollo as a model, a butterfly with wide Palearctic distribution inhabiting both alpine and low-altitude steppe grasslands. We modelled upper Pleistocene range changes from the Last Interglacial (130 Kya) to the present and future (2050/2070), using medium and high greenhouse gas emission rates for the latter. 3. We combined bioclimatic variables (Worldclim, Paleoclim, Chelsa) with distribution records of P. apollo and two of its most often used larval host plants (Sedum album; Hylotelephium telephium) to formulate species distribution models (SDMs) via the Maximum entropy method.4. We estimated a substantial range expansion during cold periods (last glacial maximum, 22 Kya) and contractions in warmer periods. Including the host plants in the models brought reduced suitable areas estimate, possibly due to differences in climatic requirements of hosts and the butterfly. Future projections of the extent of suitable climates are surprisingly better than would be expected from a warming climate, likely because the current distribution, especially at lower elevations, is probably restricted by habitat loss due to land abandonment and afforestation. 5. We recommend preventing afforestation in critical habitats across Europe and Asia, and increasing survey activities to perform more accurate SDMs.
How environmental changes are affecting bird population dynamics is one of the most challenging conservation issues. Dietary studies of top avian predators could offer scope to monitor anthropogenic drivers of ecosystem changes. We investigated the diet of breeding Eleonora's falcon in an area of Northeastern Algeria in the years 2010–2012. Feathers and insect remains originating from prey plucking behavior were analyzed, providing insights into the seasonally changing diet of this raptor, as well as the trans‐Mediterranean avian migration. A total of 77 species of birds (16 Sylviidae, 11 Turdidae, and 4 Emberizidae), 3 species of insects, and 1 lizard were identified among prey remains, reflecting a diverse diet. Diet composition and prey abundance varied seasonally, faithfully correlating with the passage of migrant birds as recorded from bird ring recoveries. Our findings suggest that dietary studies of predators might be deployed to investigate changes in bird migration. We discuss our results in the context of trans‐Mediterranean migration, with early‐season prey mainly comprising trans‐Saharan migrants (Apus apus and Merops apiaster) and late‐season prey being dominated by Mediterranean winter migrants (Erithacus rubecula, Turdus philomelos, Sylvia atricapilla, and Sturnus vulgaris). Notably, we observed a significant reduction in species richness of passerine remains in 2012, potentially highlighting a decline in the diversity of avian migrants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.