Amphibian skin is unique among vertebrate classes, containing a large number of multicellular exocrine glands that vary among species and have diverse functions. The secretions of skin glands contain a rich array of bioactive compounds including antimicrobial peptides (AMPs). Such compounds are important for amphibian innate immune responses and may protect some species from chytridiomycosis, a lethal skin disease caused by the fungal pathogens (Bd) and (Bsal). While the bioactivity of skin secretions against Bd has been assessed for many amphibian taxa, similar studies are lacking for Bsal, a chytrid fungus that is especially pathogenic for salamanders. We studied the skin glands and their potential functions in an aquatic salamander, the three-toed amphiuma (). Skin secretions of captive adult salamanders were analyzed by RP-HPLC and tested against the growth of Bd and Bsal using assays. We found that compounds within collected skin secretions were similar between male and female salamanders and inhibited the growth of Bd and Bsal. Thus, skin secretions that protect against Bd may also provide protection against Bsal. Histological examination of the skin glands of preserved salamanders revealed the presence of enlarged granular glands concentrated within caudal body regions. A site of potential gland specialization was identified at the tail base and may indicate specialized granular glands related to courtship and communication.
The recently emerged fungal pathogen, Batrachochytrium salamandrivorans (Bsal) causes the lethal skin disease chytridiomycosis in susceptible salamander species and is predicted to emerge within the Americas with devastating consequences. Host responses to Bsal are variable but the factors underlying these differences are unknown. To investigate the role of skin‐associated immune defenses against Bsal and the closely related, B. dendrobatidis (Bd), we sampled skin peptides from wild and captive North American salamanders (spotted salamanders [Ambystoma maculatum], n = 10; hellbenders [Cryptobranchus alleganiensis], n = 2; red‐legged salamanders [Plethodon shermani], n = 18; and Ocoee salamanders [Desmognathus ocoee], n = 15) and conducted in vitro experimental assays to test whether salamander skin peptides inhibit chytrid growth. Interspecies differences in skin defenses against Bsal and Bd, and peptide mixtures were also assessed using a standardized measure and RP‐HPLC, respectively. For A. maculatum, skin peptides inhibited Bsal and Bd growth, consistent with known Bsal resistance. Cryptobranchus alleganiensis skin peptides inhibited the growth of Bsal but not Bd. Plethodon shermani and D. ocoee skin peptides facilitated Bsal growth and had either no effect or inconsistent effects on Bd growth. With the exception of A. maculatum, most species had relatively weak skin defenses against both chytrid pathogens. Collectively, we demonstrate that salamander skin peptide defenses against chytrid pathogens are highly variable and not always equally effective against Bsal and Bd. By advancing knowledge about the factors underlying chytrid susceptibility, particularly Bsal, our findings will help inform conservation initiatives aimed at reducing disease impacts and biodiversity loss.
Discovered in 2013, the chytrid fungus Batrachochytrium salamandrivorans (Bsal) is an emerging amphibian pathogen that causes ulcerative skin lesions and multifocal erosion. A closely related pathogen, B. dendrobatidis (Bd), has devastated amphibian populations worldwide, suggesting that Bsal poses a significant threat to global salamander biodiversity. To expedite research into this emerging threat, we seek to standardize protocols across the field so that results of laboratory studies are reproducible and comparable. We have collated data and experience from multiple labs to standardize culturing practices of Bsal. Here we outline common culture practices including a medium for standardized Bsal growth, standard culturing protocols, and a method for isolating Bsal from infected tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.