Our confocal three-dimensional analyses revealed substantial differences in the innervation to vibrissal follicle-sinus complexes (FSCs) in the rat and cat. This is the first study using anti-protein gene product 9.5 (PGP9.5) immunolabeling and confocal microscopy on thick sections to examine systematically the terminal arborizations of the various FSC endings and to compare them between two species, the rat and the cat, that have similar-appearing FSCs but different exploratory behaviors, such as existence or absence of whisking. At least eight distinct endings were clearly discriminated three dimensionally in this study: 1) Merkel endings at the rete ridge collar, 2) circumferentially oriented lanceolate endings, 3) Merkel endings at the level of the ring sinus, 4) longitudinally oriented lanceolate endings, 5) club-like ringwulst endings, 6) reticular endings, 7) spiny endings, and 8) encapsulated endings. Of particular contrast, each nerve fiber that innervates Merkel cells at the level of the ring sinus in the rat usually terminates as a single, relatively small cluster of endings, whereas in the cat they terminate en passant as several large clusters of endings. Also, individual arbors of reticular endings in the rat ramify parallel to the vibrissae and distribute over wide, overlapping territories, whereas those in the cat ramify perpendicular and terminate in tightly circumscribed territories. Otherwise, the inner conical body of rat FSCs contains en passant, circumferentially oriented lanceolate endings that are lacking in the cat, whereas the cavernous sinus of the cat has en passant corpuscular endings that are lacking in the rat. Surprisingly, the one type of innervation that is the most similar in both species is a major set of simple, club-like endings, located at the attachment of the ringwulst, that had not previously been recognized as a morphologically unique type of innervation. Although the basic structure of the FSCs is similar in the rat and cat, the numerous differences in innervation suggest that these species would have different tactile capabilities and perceptions possibly related to their different vibrissa-related exploratory behaviors.
The mitochondrial uncoupling protein (UCP) is usually expressed only in brown adipose tissue (BAT) and a key molecule for metabolic thermogenesis. The effects of a highly selective  3-adrenergic agonist, CL316,243 (CL), on UCP expression in skeletal muscle and adipose tissues were examined in mice. Daily injection of CL (0.1 mg/kg, sc) to obese yellow KK mice for two weeks caused a significant reduction of body weight, associated with a marked decrease of white fat pad weight and hypertrophy of the interscapular BAT with a sixfold increase in UCP content. Clear signals of UCP protein and mRNA were detected by Western and Northern blot analyses in inguinal, mesenteric and retroperitoneal white fat pads, and also in gastrocnemius and quadriceps muscles, whereas no signal in saline-treated mice. The presence of UCP mRNA in muscle tissues was also confirmed by reverse transcription-PCR analysis. Weaker UCP signals were also detected in control C57BL mice treated with CL, but only in inguinal and retroperitoneal fat pads. Immunohistochemical examinations revealed that UCP stains in the white fat pads were localized on multilocular cells quite similar to typical brown adipocyte, and those in the muscle tissues on myocytes. The mitochondrial localization of UCP in myocytes was confirmed by immunoelectron microscopy. In addition to UCP protein, UCP mRNA was also detected in myocytes by in situ hybridization analysis. Thus, chronic stimulation of the  3-adrenergic receptor induces ectopic expression of UCP in adipose tissues conventionally considered as white fat and even in skeletal muscle, which probably contributes to the potent anti-obesity effect of the  3-adrenergic agonist. ( J. Clin. Invest. 1996. 97:2898-2904.) Key words: brown adipose tissue • immunohistochemistry • obesity • yellow KK mice
Ndel1, a protein located at the subdistal appendage of mother centriole, functions as an upstream regulator of the trichoplein–Aurora A pathway that suppresses ciliogenesis in proliferating cells.
OBJECTIVE: To test the hypothesis that nicotine not only activates uncoupling protein1 (UCP1) in brown adipose tissue (BAT), but also induces UCP1 in white adipose tissue (WAT), which contributes to the mitigation of obesity in obese mice. DESIGN: Weights of the whole body, the gastrocnemius muscle, interscapular BAT and subcutaneous and retroperitoneal WAT, food intake and the mRNA and protein of UCP1 in these tissues were measured and immunohistochemistry using antiserum against UCP1 was also performed in obese yellow KK mice treated with nicotine for 6 months and control mice treated with physiological saline. RESULTS: Obese mice treated with nicotine for 6 months, compared with those injected with saline, weighed signi®cantly less (P`0.01) and had smaller subcutaneous and retroperitoneal WAT pads (P`0.01), while obese mice that received nicotine ate less (P`0.05) than those injected with saline. In mice treated with nicotine, the mRNA and protein of UCP1 was detected not only in BAT, but also in subcutaneous and retroperitoneal WATs. Immunohistochemically, the BAT of obese mice contained large lipid droplets and appeared rather WAT-like, but changed to typical brown adipocytes after nicotine treatment. The fat pads of nicotine-treated mice contained many multilocular cells that were positive for UCP1. CONCLUSION: Nicotine not only activates UCP1 in BAT, but also induces UCP1 in WAT and decreases food intake, which contributes to the mitigation of obesity.
This study focuses on the structure and function of the primary sensory neurons that innervate vibrissal follicles in the rat. Both the peripheral and central terminations, as well as their firing properties were identified using intracellular labelling and recording in trigeminal ganglia in vivo. Fifty-one labelled neurons terminating peripherally, as club-like, Merkel, lanceolate, reticular or spiny endings were identified by their morphology. All neurons responded robustly to air puff stimulation applied to the vibrissal skin. Neurons with club-like endings responded with the highest firing rates; their peripheral processes rarely branched between the cell body and their terminal tips. The central branches of these neurons displayed abundant collaterals terminating within all trigeminal nuclei. Analyses of three-dimensional reconstructions reveal a palisade arrangement of club-like endings bound to the ringwulst by collagen fibers. Our morphological findings suggest that neurons with club-like endings sense mechanical aspects related to the movement of the ringwulst and convey this information to all trigeminal nuclei in the brainstem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.