BackgroundWhile several molecular markers of bladder cancer prognosis have been identified, the limited value of current prognostic markers has created the need for new molecular indicators of bladder cancer outcomes. The aim of this study was to identify genetic signatures associated with disease prognosis in bladder cancer.ResultsWe used 272 primary bladder cancer specimens for microarray analysis and real-time reverse transcriptase polymerase chain reaction (RT-PCR) analysis. Microarray gene expression analysis of randomly selected 165 primary bladder cancer specimens as an original cohort was carried out. Risk scores were applied to stratify prognosis-related gene classifiers. Prognosis-related gene classifiers were individually analyzed with tumor invasiveness (non-muscle invasive bladder cancer [NMIBC] and muscle invasive bladder cancer [MIBC]) and prognosis. We validated selected gene classifiers using RT-PCR in the original (165) and independent (107) cohorts. Ninety-seven genes related to disease progression among NMIBC patients were identified by microarray data analysis. Eight genes, a progression-related gene classifier in NMIBC, were selected for RT-PCR. The progression-related gene classifier in patients with NMIBC was closely correlated with progression in both original and independent cohorts. Furthermore, no patient with NMIBC in the good-prognosis signature group experienced cancer progression.ConclusionsWe identified progression-related gene classifier that has strong predictive value for determining disease outcome in NMIBC. This gene classifier could assist in selecting NMIBC patients who might benefit from more aggressive therapeutic intervention or surveillance.
Enhanced PRDX I and VI expression is strongly associated with bladder cancer development. Moreover, enhanced PRDX I and VI expression is also positively associated with a low rate of bladder cancer recurrence and progression. It might be useful as a marker for assessing the recurrence or progression of human bladder cancer.
In a crowded harbor water area, it is a major concern to control ship traffic for assuring safety and maximizing the efficiency of port operations. Vessel Traffic Service (VTS) operators pay much attention to caution areas like ship route intersections or traffic congestion area in which there are some risks of ship collision. They want to control the traffic of the caution area at a proper level to lessen risk. Inertial ship movement makes swift changes in direction and speed difficult. It is hence important to predict future traffic of the caution area earlier on so as to get enough time for control actions on ship movements. In the harbor area, VTS stations collect a large volume of Automatic Identification Service (AIS) sensor data, which contain information about ship movement and ship attributes. This paper proposes a new deep neural network model called Ship Traffic Extraction Network (STENet) to predict the medium-term traffic and long-term traffic of the caution area. The STENet model is trained with AIS sensor data. The STENet model is organized into a hierarchical architecture in which the outputs of the movement and contextual feature extraction modules are concatenated and fed into a prediction module. The movement module extracts the features of overall ship movements with a convolutional neural network. The contextual modules consist of five separated fully-connected neural networks, each of which receives an associated attribute. The separation of feature extraction modules at the front phase helps extract the effective features by preventing unrelated attributes from crosstalking. To evaluate the performance of the proposed model, the developed model is applied to a real AIS sensor dataset, which has been collected over two years at a Korean port called Yeosu. In the experiments, four methods have been compared including two new methods: STENet and VGGNet-based models. For the real AIS sensor dataset, the proposed model has shown 50.65% relative performance improvement on average for the medium-term predictions and 57.65% improvement on average for the long-term predictions over the benchmark method, i.e., the SVR-based method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.