A wet phase inversion process of polyamic acid (PAA) allowed fabrication of a porous membrane of polyimide (PI) with the combination of a low dielectric constant (1.7) and reasonable mechanical properties (Tensile strain: 8.04%, toughness: 3.4 MJ/m3, tensile stress: 39.17 MPa, and young modulus: 1.13 GPa), with further thermal imidization process of PAA. PAA was simply synthesized from purified pyromellitic dianhydride (PMDA) and 4,4-oxydianiline (ODA) in two different reaction solvents such as γ-butyrolactone (GBL) and N-methyl-2-pyrrolidinone (NMP), which produce Mw/PDI of 630,000/1.45 and 280,000/2.0, respectively. The porous PAA membrane was fabricated by the wet phase inversion process based on a solvent/non-solvent system via tailored composition between GBL and NMP. The porosity of PI, indicative of a low electric constant, decreased with increasing concentration of GBL, which was caused by sponge-like formation. However, due to interplay between the low electric constant (structural formation) and the mechanical properties, GBL was employed for further exploration, using toluene and acetone vs. DI-water as a coagulation media. Non-solvents influenced determination of the PAA membrane size and porosity. With this approach, insight into the interplay between dielectric properties and mechanical properties will inform a wide range of potential low-k material applications.
For the fine‐pitch application of flip‐chip bonding with semiconductor packaging, fluxing and hybrid underfills were developed. A micro‐encapsulated catalyst was adopted to control the chemical reaction at room and processing temperatures. From the experiments with a differential scanning calorimetry and viscometer, the chemical reaction and viscosity changes were quantitatively characterized, and the optimum type and amount of micro‐encapsulated catalyst were determined to obtain the best pot life from a commercial viewpoint. It is expected that fluxing and hybrid underfills will be applied to fine‐pitch flip‐chip bonding processes and be highly reliable.
Ultraviolet (UV) irradiated supramolecular polybutadienes (PBs) containing 2-ureido-4-[1H]-pyrimidone (UPy) linkages were examined as a simple model for curable supramolecular elastomers. Via precise control of UV exposure, the cure and the degradation of the vinyl groups within the PB elastomeric core were investigated. The combination of UPy binding and covalent cross-linking by UV irradiation dramatically enhanced mechanical properties of these UPy-functionalized elastomers, yielding toughness enhancement up to ∼200× at the 5 min UV cure. UVinitiated cross-linking dominated the curing process up to ∼50 min exposure time. Beyond this cure time, dominant degradation of the vinyl linkages was observed. Control of this UV-initiated process yielded supramolecular elastomers with a covalently cross-linked phase induced by UV irradiation combined with a noncovalent UPy cross-linked phase induced by secondary hydrogen bonding interactions. Of particular note, it was determined that the presence of UPy hydrogen-bonded aggregates accelerated the UV cross-linking process during the initial stage of exposure. This observation was attributed to microphaseseparated structure of UV-irradiated supramolecular elastomer, where UPy aggregation increased the probability of interaction between the pendant vinyls responsible for UV cross-linking. The systematic study of uniaxial tensile behavior of the UVirradiated supramolecular elastomers offers new insight into the design and architecture of mechanically tunable supramolecular elastomers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.