Nature is perceived and valued in starkly different and often conflicting ways. This paper presents the rationale for the inclusive valuation of nature’s contributions to people (NCP) in decision making, as well as broad methodological steps for doing so. While developed within the context of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES), this approach is more widely applicable to initiatives at the knowledge–policy interface, which require a pluralistic approach to recognizing the diversity of values. We argue that transformative practices aiming at sustainable futures would benefit from embracing such diversity, which require recognizing and addressing power relationships across stakeholder groups that hold different values on human nature-relations and NCP
High-throughput technology has facilitated genome-scale analyses of transcriptomic adjustments in response to environmental perturbations with an oxygen deprivation component, such as transient hypoxia or anoxia, root waterlogging, or complete submergence. We showed previously that Arabidopsis (Arabidopsis thaliana) seedlings elevate the levels of hundreds of transcripts, including a core group of 49 genes that are prioritized for translation across cell types of both shoots and roots. To recognize low-oxygen responses that are evolutionarily conserved versus species specific, we compared the transcriptomic reconfiguration in 21 organisms from four kingdoms (Plantae, Animalia, Fungi, and Bacteria). Sorting of organism proteomes into clusters of putative orthologs identified broadly conserved responses associated with glycolysis, fermentation, alternative respiration, metabolite transport, reactive oxygen species amelioration, chaperone activity, and ribosome biogenesis. Differentially regulated genes involved in signaling and transcriptional regulation were poorly conserved across kingdoms. Strikingly, nearly half of the induced mRNAs of Arabidopsis seedlings encode proteins of unknown function, of which over 40% had up-regulated orthologs in poplar (Populus trichocarpa), rice (Oryza sativa), or Chlamydomonas reinhardtii. Sixteen HYPOXIA-RESPONSIVE UNKNOWN PROTEIN (HUP) genes, including four that are Arabidopsis specific, were ectopically overexpressed and evaluated for their effect on seedling tolerance to oxygen deprivation. This allowed the identification of HUPs coregulated with genes associated with anaerobic metabolism and other processes that significantly enhance or reduce stress survival when ectopically overexpressed. These findings illuminate both broadly conserved and plant-specific lowoxygen stress responses and confirm that plant-specific HUPs with limited phylogenetic distribution influence low-oxygen stress endurance.Oxygen is required for the efficient production of ATP by plants and other aerobes. Despite the extremely high affinities for oxygen of the oxidases involved in aerobic respiration (K m of 0.08-1 mM; Hoshi et al., 1993), obligate and facultative aerobes regularly experience oxygen deprivation for myriad reasons. Although oxygen is a by-product of photosynthesis, plants lack a circulatory system to mobilize oxygen to heterotrophic roots, tubers, meristems, germinating pollen, and developing seeds. These and flooded organs are vulnerable to oxygen deficiency. In mammals, intermittent tissue or cellular hypoxia can occur due to inhibition of pulmonary respiration (i.e. sleep apnea; Azad et al., 2009) and blood flow (i.e. stroke; Mense et al., 2006), a low-oxygen environment (i.e. high altitude), or high cellular density and metabolic activity (i.e. tumor cells and ischemia [Fang et al., 2009]). In the case of microbes, oxygen availability is influenced by the density and identity of surrounding organisms and can be modulated over the course of a day or season, as observed in the microb...
Species-area relationships (SARs) characterize the spatial distribution of species diversity in community ecology, but the biological mechanisms underlying the SARs have not been fully explored. Here, we examined the roles of dispersal limitation and habitat heterogeneity in shaping SARs in two large-scale forest plots. One is a 24-ha subtropical forest in Gutianshan National Nature Reserve, China. The other is a 50-ha tropical rain forest in Barro Colorado Island, Panama. Spatial point pattern models were applied to investigate the contributions of dispersal and habitat heterogeneity and their interactions to the formation of the SARs in the two sites. The results showed that, although dispersal and habitat heterogeneity each could significantly contribute to the SARs, each alone was insufficient to explain the SARs. Their joint effects sufficiently explained the real SARs, suggesting that heterogeneous habitat and dispersal limitation are two predominant mechanisms for maintaining the spatial distributions of the species in these two forests. These results add to our understanding of the ecological processes underlying the spatial variation of SARs in natural forest communities.
Spatial patterns of biodiversity are inextricably linked to their collection methods, yet no synthesis of bias patterns or their consequences exists. As such, views of organismal distribution and the ecosystems they make up may be incorrect, undermining countless ecological and evolutionary studies. Using 742 million records of 374 900 species, we explore the global patterns and impacts of biases related to taxonomy, accessibility, ecotype and data type across terrestrial and marine systems. Pervasive sampling and observation biases exist across animals, with only 6.74% of the globe sampled, and disproportionately poor tropical sampling. High elevations and deep seas are particularly unknown. Over 50% of records in most groups account for under 2% of species and citizen‐science only exacerbates biases. Additional data will be needed to overcome many of these biases, but we must increasingly value data publication to bridge this gap and better represent species' distributions from more distant and inaccessible areas, and provide the necessary basis for conservation and management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.