Planning and decision-making technology at intersections is a comprehensive research problem in intelligent transportation systems due to the uncertainties caused by a variety of traffic participants. As wireless communication advances, vehicle infrastructure integrated algorithms designed for intersection planning and decision-making have received increasing attention. In this paper, the recent studies on the planning and decision-making technologies at intersections are primarily overviewed. The general planning and decision-making approaches are presented, which include graph-based approach, prediction base approach, optimization-based approach and machine learning based approach. Since connected autonomous vehicles (CAVs) is the future direction for the automated driving area, we summarized the evolving planning and decision-making methods based on vehicle infrastructure cooperative technologies. Both four-way signalized and unsignalized intersection(s) are investigated under purely automated driving traffic and mixed traffic. The study benefit from current strategies, protocols, and simulation tools to help researchers identify the presented approaches’ challenges and determine the research gaps, and several remaining possible research problems that need to be solved in the future.
Left-turn planning is one of the formidable challenges for autonomous vehicles, especially at unsignalized intersections due to the unknown intentions of oncoming vehicles. This paper addresses the challenge by proposing a critical turning point (CT P ) based hierarchical planning approach. This includes a high-level candidate path generator and a low-level partially observable Markov decision process (POMDP) based planner. The proposed CT P concept, inspired by human-driving behaviors at intersections, aims to increase the computational efficiency of the low-level planner and to enable human-friendly autonomous driving. The POMDP based low-level planner takes unknown intentions of oncoming vehicles into considerations to perform less conservative yet safe actions. With proper integration, the proposed hierarchical approach is capable of achieving safe planning results with high commute efficiency at unsignalized intersections in real time.N2L 3G1, Canada k3shu, huilong.yu, xingxin.chen,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.