The geochemistry and petrology of the LDX-1 structure of the Yinggehai basin, a natural analog of a sedimentary carbon storage site, was investigated to understand the consequences of the charging of CO2 gas in this system. The rocks in this structure are dominated by subarkose and sublitharenite sandstones. The authigenic minerals formed after CO2 injection are dawsonite, microcrystalline quartz, kaolinite and ankerite.Dawsonite and ankerite are formed just beneath a CO2 bearing anticlinal structure due to the reactions between silicate minerals (feldspars and clay minerals) and the fluid phase. Carbon and oxygen isotopic analyses indicate that the main carbon source for dawsonite and ankerite formation was mantle magmatic CO2. The aqueous activities of sodium and calcium, the partial pressure of CO2, pH and temperature are the key factors influencing the stability of the dawsonite and ankerite. The presence of the anticlinal structure maintaining a locally high CO2 partial pressure in the waters beneath this structure is likely responsible for the observed long-term persistence of dawsonite and ankerite in this system.
The Xihu depression is an offshore sag located on the East China Sea Shelf Basin, which is currently one of the major oil and gas basins along the coast of China. In this study, an integrated approach using thin sections, scanning electron microscopy (SEM), X-ray diffraction (XRD), cathodoluminescence (CL), high-resolution 3D CT core scanning and stable isotope analysis was applied to examine the diagenetic evolution and investigate the microscopic characteristics and formation mechanisms associated with effective reservoirs. Four types were distinguished: upper conventional reservoirs (UC reservoirs), lower conventional reservoirs (LC reservoirs), “bottom calcium” low-permeability reservoirs (“bottom calcium” reservoirs) and “MI clay” low-permeability reservoirs (“MI clay” reservoirs). Poikilotopic calcite cements play an important role in the diagenetic alterations and reservoir quality evolution, precipitating during early eogenesis, provided a framework that retards the adverse impacts of UC reservoirs by compaction. Conversely, in LC reservoirs, with limited poikilotopic calcite, secondary porosity is mostly due to the dissolution of feldspar or unstable rock fragments. UC reservoirs normally develop in the middle of tidal channels and in subaqueous distributary channels, with the base of the sand-body being extensively cemented by carbonate cements, such as late calcite, Fe-calcite and dolomite, which formed the “bottom calcium” reservoir. Combined evidence from petrographic and geochemical analyses suggests that calcite precipitates from diagenetic fluids of mixed marine and meteoric waters, with additional external sources from calcareous siltstones and bioclasts. The carbon sources of calcite mostly originate from the dissolution of carbonates clacts or bioclasts within sandstone beds or adjacent silty mudstones, while dolomite cements have an isotopic composition that is more comparable to the generation of biogenic methane. This study demonstrates how poikilotopic calcite, developed in tide-dominated delta systems, affects the vertical heterogeneity. The results can be used to improve the reservoir evolution model of tide-dominated delta systems and provide a basic understanding for researchers conducting reservoir studies of similar sedimentary systems. Our results can act as a geological basis for further oil and gas exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.