Arsenic content in copper concentrates is continuously increasing worldwide. It is desirable to remove arsenic from copper in the earlier stages of copper making due to the deposition of arsenic to cathode copper during the electrorefining process. Effects of temperature, flux, and oxygen on the distribution of arsenic during copper converting and fire refining processes were studied using FactSage 8.2. The results showed that arsenic can be effectively removed by proper selection of converting and refining slags. The decrease in Fe/SiO2 or Fe/CaO ratio in the converting slag is favorable for arsenic distributed to slag. CaO is more effective than SiO2 in decreasing the liquidus temperature of the slag and arsenic content in the blister copper during the converting process. Na2O or CaO as a flux is effective to remove arsenic in the fire refining process.
Copper smelting slag usually contains 1–6 wt% copper, which can be recovered by pyrometallurgical and flotation processes. However, the tailing slags still consist of 0.3–0.7 wt% Cu and 35–45 wt% Fe equivalents to those in the copper and iron ores, respectively. Most of the research was focused on the recovery of iron from the tailing slags. Copper can increase the mechanical strength, corrosion resistance and antibacterial property of some steels. A new process to recover copper and iron directly and fully from hot copper smelting slag is proposed to produce Cu-Fe alloy for steel production. Effects of flux, temperature, reaction time, reductant type and addition on the recovery of copper and iron were investigated by high-temperature experiments and thermodynamic calculations. It was found that, with 5% CaO and 13–16% carbon additions, most of the copper and iron can be recovered from copper smelting slag at 1350–1400 °C. The copper and iron contents of the reduced slag are lower than 0.1% and 0.5%, respectively, at optimum condition. The new process has the advantages of low energy consumption, low flux addition and high recovery of copper and iron.
Bottom-blowing copper smelting is a bath smelting technology recently developed in China. It has the advantages of good adaptability of raw materials, high oxygen utilization and thermal efficiency, and flexible production capacity. Plume eye is a unique phenomenon observed in the bottom-blowing copper-smelting furnace where the slag on the surface of the bath is pushed away by the high-pressure gas injected from the bottom. The existence of plume eye was first confirmed by analyzing the quenched industrial samples collected above the gas injection area and then investigated by laboratory water model experiments. Combining the plant operating data and the smelting mechanism of the copper concentrate, the role of the plume eye in bottom-blowing-enhanced smelting is analyzed. It reveals that the direct dissolution of copper concentrate as a low-grade matte into the molten matte can significantly accelerate the reactions between the concentrate and oxygen. The productivity of the bottom-blowing furnace is therefore increased as a result. The effects of the gas flow rate and thickness of the matte and of the slag layer on the diameter of the plume eye were studied using water-model experiments. It was found that increasing the gas flow and the thickness of the matte and reducing the thickness of the slag can increase the diameter of the plume eye. This work is of great significance for further understanding the copper bottom-blowing smelting technology and optimizing industrial operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.