This paper investigates the relationship between technological progress in the energy sector and carbon emissions based on the Environment Kuznets Curve (EKC) and data from China during the period of 1995–2012. Our study confirms that the situation in China conforms to the EKC hypothesis and presents the inverted U-curve relationship between per capita income and carbon emissions. Furthermore, the inflection point will be reached in at least five years. Then, we use research and development (R & D) investment in the energy industry as the quantitative indicator of its technological progress to test its impact on carbon emissions. Our results show that technological progress in the energy sector contributes to a reduction in carbon emissions with hysteresis. Furthermore, our results show that energy efficiency improvements are also helpful in reducing carbon emissions. However, climate policy and change in industrial structure increase carbon emissions to some extent. Our conclusion demonstrates that currently, China is not achieving economic growth and pollution reduction simultaneously. To further achieve the goal of carbon reduction, the government should increase investment in the energy industry research and improve energy efficiency.
This paper investigates the relationship between energy consumption and technological innovation using a dynamic panel data model and regional-level data from China for the period 1995-2012. In contrast to previous studies, it examines the short and long-run bilateral relationship between technological innovation and energy consumption. The results show that in the short run, technological innovation leads to an increase in energy consumption, while energy consumption has no significant effect on technological innovation. In the long run, however, energy consumption is positively and bilaterally related to technological innovation. These findings suggest that although technological innovation does not directly lead to a reduction in energy consumption as mentioned in the extant literature, it could help achieve sustainability through improving energy efficiency and developing energy structure for developing countries.
Mining is a dangerous job which takes place under several hundred meters deep mines and requires multiteam collaboration. Coal miners often encounter critical situations so that traditional coordination methods such as meetings are no longer applicable, and an implicit coordination mechanism needs to be established for front-line mining teams. Many scholars study implicit coordination in emergency management, while this research aims to explore the implicit coordination mechanism in mining teams. Besides, we analyze the impact of a large number of information technology applications (such as intelligent mining robots, intelligent mine system) on implicit coordination. The results verify the significant moderate effect of IT capability on implicit coordination. Finally, we provide some practical suggestions for coal mine managers and coal miners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.