Bone tissue engineering (BTE) is an ongoing field of research based on clinical needs to treat delayed and non-union long bone fractures. An ideal tissue engineering scaffold should have a biodegradability property matching the rate of new bone turnover, be non-toxic, have good mechanical properties, and mimic the natural extracellular matrix to induce bone regeneration. In this study, biodegradable chitosan (CS) scaffolds were prepared with combinations of bioactive ceramics, namely hydroxyapatite (HAp), tricalcium phosphate-α (TCP- α), and fluorapatite (FAp), with a fixed concentration of benzophenone photoinitiator (50 µL of 0.1% (w/v)) and crosslinked using a UV curing system. The efficacy of the one-step crosslinking reaction was assessed using swelling and compression testing, SEM and FTIR analysis, and biodegradation studies in simulated body fluid. Results indicate that the scaffolds had comparable mechanical properties, which were: 13.69 ± 1.06 (CS/HAp), 12.82 ± 4.10 (CS/TCP-α), 13.87 ± 2.9 (CS/HAp/TCP-α), and 15.55 ± 0.56 (CS/FAp). Consequently, various benzophenone concentrations were added to CS/HAp formulations to determine their effect on the degradation rate. Based on the mechanical properties and degradation profile of CS/HAp, it was found that 5 µL of 0.1% (w/v) benzophenone resulted in the highest degradation rate at eight weeks (54.48% degraded), while maintaining compressive strength between (4.04 ± 1.49 to 10.17 ± 4.78 MPa) during degradation testing. These results indicate that incorporating bioceramics with a suitable photoinitiator concentration can tailor the biodegradability and load-bearing capacity of the scaffolds.
A large bone defect is defined as a defect that exceeds the regenerative capacity of the bone. Nowadays, autologous bone grafting is still the gold standard treatment. In this study, a hybrid bone tissue engineering scaffold (BTE) was designed with biocompatibility, biodegradability and adequate mechanical strength as the primary objectives. Chitosan (CS) is a biocompatible and biodegradable polymer that can be used in a wide range of applications in bone tissue engineering. Hydroxyapatite (HAp) and fluorapatite (FAp) have the potential to improve the mechanical properties of CS. In the present work, different volumes of acetic acid (AA) and different ratios of HAp and FAp scaffolds were prepared and UV cross-linked to form a 3D structure. The properties of the scaffolds were characterised by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, swelling studies and compression testing. The cytotoxicity result was obtained by the MTT assay. The degradation rate was tested by weight loss after the scaffold was immersed in SBF. The results showed that a crosslinked structure was formed and that bonding occurred between different materials within the scaffold. Additionally, the scaffolds not only provided sufficient mechanical strength but were also cytocompatibility, depending on their composition. The scaffolds were degraded gradually within a 6-to-8-week testing period, which closely matches bone regeneration rates, indicating their potential in the BTE field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.