The ROF2 (FKBP65) is a heat stress protein which belongs to the FK506 Binding Protein (FKBP) family. It is homologous to ROF1 (FKBP62) which was recently shown to be involved in long term acquired thermotolerance by its interaction with HSP90.1 and modulation of the heat shock transcription factor HsfA2. In this study, we have demonstrated that ROF2 participates in long term acquired thermolerance, its mode of action being different from ROF1. In the absence of ROF2, the small heat shock proteins were highly expressed and the plants were resistant to heat stress, opposite to the effect observed in the absence of ROF1. It was further demonstrated that ROF2 transcription is modulated by HsfA2 which is also essential for keeping high levels of ROF2 during recovery from heat stress. ROF2 localization to the nucleus was observed several hours after heat stress exposure and its translocation to the nucleus was independent from the presence of HSP90.1 or HsfA2. ROF2 has been shown to interact with ROF1, to form heterodimers and it is suggested that via this interaction it can join the complex ROF1-HSP90.1- HsfA2. Transient expression of ROF2 together with ROF1 repressed transcription of small HSPs. A model describing the mode of action of ROF2 as a heat stress modulator which functions in negative feedback regulation of HsfA2 is proposed.
The plant co-chaperones FK506-binding proteins (FKBPs) are peptidyl prolyl cis-trans isomerases that function in protein folding, signal transduction and chaperone activity. We report the characterization of the Arabidopsis large FKBPs ROF1 (AtFKBP62) and ROF2 (AtFKBP65) expression and protein accumulation patterns. Transgenic plants expressing ROF1 promoter fused to GUS reporter gene reveal that ROF1 expression is organ specific. High expression was observed in the vascular elements of roots, in hydathodes and trichomes of leaves and in stigma, sepals, and anthers. The tissue specificity and temporal expression of ROF1 and ROF2 show that they are developmentally regulated. Although ROF1 and ROF2 share 85% identity, their expression in response to heat stress is differentially regulated. Both genes are induced in plants exposed to 37 degrees C, but only ROF2 is a bonafide heat-stress protein, undetected when plants are grown at 22 degrees C. ROF1/ROF2 proteins accumulate at 37 degrees C, remain stable for at least 4 h upon recovery at 22 degrees C, whereas, their mRNA level is reduced after 1 h at 22 degrees C. By protein interaction assays, it was demonstrated, that ROF1 is a novel partner of HSP90. The five amino acids identified as essential for recognition and interaction between the mammalian chaperones and HSP90 are conserved in the plant ROF1-HSP90. We suggest that ROF/HSP90 complexes assemble in vivo. We propose that specific complexes formation between an HSP90 and ROF isoforms depends on their spatial and temporal expression. Such complexes might be regulated by environmental conditions such as heat stress or internal cues such as different hormones.
SUMMARYV-ATPase null mutants in yeast have a distinct, conditionally lethal phenotype that can be obtained through disruption of any one of its subunits. This enables supplementation of this mutant with the relevant subunit tagged with an epitope against which an antibody is available. In this system, the effect of antibody on the activity of the enzyme can be analyzed. Towards this end we used HA to tag subunits Vma7p, Vma10p and Vma16p, which are assumed to represent, respectively, the shaft, stator and turbine of the enzyme, and used them to supplement the corresponding yeast V-ATPase null mutants. The anti-HA epitope antibody inhibited both the ATP-dependent proton uptake and the ATPase activities of the Vma16p-HA and Vma7p-HA containing complexes, in intact vacuoles and in the detergent-solubilized enzyme. Neither of these activities was inhibited by the antibody in Vma10p-HA containing enzyme. These results support the function of Vma10p as part of the stator, while the other tagged subunits are part of the rotor apparatus. The HA-tag was attached to the N terminus of Vma16p; thus the antibody inhibition points to its accessibility outside the vacuolar membrane. This assumption is supported by the supplementation of the yeast mutant by the homologues of Vma16p isolated from Arabidopsis thaliana and lemon fruit c-DNA. Contrary to yeast, which has five predicted helices, the plant subunit Vma16p has only four. Our results confirm a recent report that only four of the yeast Vma16p complexes are actually transmembrane helices.
Complementation of yeast null mutants is widely used for cloning of homologous genes from heterologous sources. We have used this method to clone the relevant V-ATPase genes from lemon fruit and Arabidopsis thaliana cDNA libraries. The pH levels are very different in the vacuoles of the lemon fruit and the A. thaliana, yet both are the result of the activity of the same enzyme complex, namely the V-ATPase. In order to investigate the mechanism that enables the enzyme to maintain such differences in pH values, we have compared the subunit composition of the V-ATPase complex from both sources. Towards this end, we have constructed a cDNA library from lemon fruit and cloned it into a similar shuttle vector to the one of the A. thaliana cDNA library, which is commercially available. In this work, we report the cloning and expression of VMA10 from both sources, two isoforms of the lemon proteolipid (VMA3) and the lemon homologue of yeast VPH1/STV1 subunit, LEMAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.