A reliable lateral flow immunoassay (LFIA) based on a facile one-step synthesis of single microspheres in combining with immunochromatography technique was developed to establish a new point-of-care test (POCT) for the rapid and early detection of cardiac troponin I (cTnI), a kind of cardiac specific biomarker for acute myocardial infarction (AMI). The double layered microspheres with clear core-shell structures were produced using soap-free emulsion polymerization method with inexpensive compounds (styrene and acrylic acid). The synthetic process was simple, rapid and easy to control due to one-step synthesis without any complicated procedures. The microspheres are nanostructure with high surface area, which have numerous carboxyl groups on the out layer, resulting in high-efficiency coupling between the carrier and antibody via amide bond. Meanwhile, the red fluorescent dye, Nile-red (NR), was wrapped inside the microspheres to improve its stability, as well to reduce the background noise, because of its higher emission wavelength than interference from real plasma samples. The core-shell structures provided different functional areas to separate antibody and dyes, so the immunoassay has highly sensitive, wide working curves in the range of 0–40 ng/mL, low limits of detection (LOD) at 0.016 ng/mL, and limits of quantification (LOQ) at 0.087 ng/mL with coefficient of variations (CV) of 10%. This strategy suggested an outstanding platform for LFIA, with good reproducibility and stability to straightforwardly analyze the plasma samples without washing steps, thereby reducing the operating procedures for non-professionals and promoting detection efficiency. The whole detection process can be completed in less than 15 min. This novel immunoassay offers a reliable and favorable analytical result by detecting the real samples, indicating that it holds great potential as a new alternative for biomolecule detection in complex samples, for the early detection of cardiac specific biomarkers.
The possibility of using variable domain heavy-chain antibodies (VHH antibodies) as diagnostic tools for dengue virus (DENV) type 2 NS1 protein was investigated and compared with the use of conventional monoclonal antibodies. After successful expression of DENV type 2 NS1 protein, the genes of VHH antibodies against NS1 protein were biopanned from a non-immune llama library by phage display. VHH antibodies were then expressed and purified from Escherichia coli. Simultaneously, monoclonal antibodies were obtained by the conventional route. Sequence analysis of the VHH antibodies revealed novel and long complementarity determining regions 3 (CDR3). Epitope mapping was performed via a phage display peptide library using purified VHH and monoclonal antibodies as targets. Interestingly, the same region of NS1, which comprises amino acids 224HWPKPHTLW232, was conserved for both kinds of antibodies displaying the consensus motif histidine-tryptophan-tryptophan or tryptophan-proline-tryptophan. The two types of antibodies were used to prepare rapid diagnostic kits based on immunochromatographic assay. The VHH antibody immobilized rapid diagnostic kit showed better sensitivity and specificity than the monoclonal antibody immobilized rapid diagnostic kit, which might be due to the long CDR3 regions of the VHH antibodies and their ability to bind to the pocket and cleft of the targeted antigen. This demonstrates that VHH antibodies are likely to be an option for developing point-of-care tests against DENV infection.
We assessed a colloidal gold immunochromatographic assay (GICA) for rapid detection of influenza A (H7N9) and compared it with reverse-transcription-polymerase chain reaction (RT-PCR) and viral culture. Samples from 35 H7N9 infected patients were collected, including 45 throat swab samples, 56 sputum samples, and 39 feces samples. All samples were tested by GICA, viral culture, and RT-PCR. GICA specifically reacted with recombinant HA proteins, virus lysates, and clinical samples from H7 subtype viruses. Compared with RT-PCR, GICA demonstrated low sensitivity (33.33%) but high specificity (97.56%). The positive rate of GICA tests for samples collected in the period from 8 to 21 days after contact with poultry was much higher than those for samples collected before or after this period. Compared with viral culture, GICA showed sensitivity of 91.67% and specificity of 82.03%. Sputum specimens were more likely to test positive for H7N9 virus than samples from throat swabs and feces. The GICA-based H7 test is a reliable, rapid, and convenient method for the screening and diagnosis of influenza A (H7N9) disease, especially for the sputum specimens with high viral load. It may be helpful in managing H7N9 epidemics and preliminary diagnosis in early stages in resource-limited settings.
BackgroundMost rapid diagnostic tests (RDTs) currently used for malaria diagnosis cannot distinguish the various Plasmodium infections. The development of a Plasmodium vivax specific RDTs with high sensitivity to sufficiently differentiate the two most common Plasmodium infections would be very crucial for disease treatment and control.MethodPlasmodium vivax aldolase gene (PvALDO) was amplified from the extracted genomic DNA and constructed into pET30a vector. Plasmodium vivax aldolase protein was successfully expressed in Escherichia coli in soluble form and the overall purity was over 95% after one-step affinity chromatography purification. The purified products were used for the immunization of mice and rabbits. Rabbit polyclonal antibodies generated were deployed to develop a novel antibody-capture ELISA for hybridoma screening.ResultsThree PvALDO specific mAbs (14C7, 15F1 and 5H7) with high affinities were selected and used in immunochromatographic test strips. Clinical blood samples (n=190) collected from Yunnan (China) were used for evaluation and the RDT’s sensitivity for P. vivax was 98.33% (95% Confidence Interval (CI): 91.03% to 99.72%) compared with microscopic examination. There was specificity of 99.23% (95% CI: 95.77% to 99.87%) for P. vivax. Only one Plasmodium falciparum sample was detected among the P. falciparum samples (n=20). All Plasmodium malariae samples (n=2) as well as healthy uninfected samples (n=108) were negative. Overall performance of this RDT was excellent with positive predictive value (PPV) and negative predictive value (NPV) of 98.33% and 99.23%, respectively, at 95% CI and a very good correlation with microscopic observations (kappa value, K=0.9757). Test strips show high sensitivity even at 6.25 ng/ml of recombinant P. vivax aldolase (rPvALDO).ConclusionThis study further elucidates the possibility of developing aldolase-specific RDTs which can differentiate the different Plasmodium infections and improve accurate diagnosis of malaria. This RDT could adequately differentiate between P. vivax and P. falciparum infections. The novel mAb screening method developed here could find application in the screening of highly specific antibodies against other antigens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.