The baker's yeast mutation collections are extensively used genetic resources that are the basis for many genome-wide screens and new technologies. Anecdotal evidence has previously pointed to the putative existence of a neighboring gene effect (NGE) in these collections. NGE occurs when the phenotype of a strain carrying a particular perturbed gene is due to the lack of proper function of its adjacent gene. Here we performed a large-scale study of NGEs, presenting a network-based algorithm for detecting NGEs and validating software predictions using complementation experiments. We applied our approach to four datasets uncovering a similar magnitude of NGE in each (7-15%). These results have important consequences for systems biology, as the mutation collections are extensively used in almost every aspect of the field, from genetic network analysis to functional gene annotation.
The sliding clamp, PCNA, plays a central role in DNA replication and repair. In the moving replication fork, PCNA is present at the leading strand and at each of the Okazaki fragments that are formed on the lagging strand. PCNA enhances the processivity of the replicative polymerases and provides a landing platform for other proteins and enzymes. The loading of the clamp onto DNA is performed by the Replication Factor C (RFC) complex, whereas its unloading can be carried out by an RFC-like complex containing Elg1. Mutations in ELG1 lead to DNA damage sensitivity and genome instability. To characterize the role of Elg1 in maintaining genomic integrity, we used homology modeling to generate a number of site-specific mutations in ELG1 that exhibit different PCNA unloading capabilities. We show that the sensitivity to DNA damaging agents and hyper-recombination of these alleles correlate with their ability to unload PCNA from the chromatin. Our results indicate that retention of modified and unmodified PCNA on the chromatin causes genomic instability. We also show, using purified proteins, that the Elg1 complex inhibits DNA synthesis by unloading SUMOylated PCNA from the DNA. Additionally, we find that mutations in ELG1 suppress the sensitivity of rad5Δ mutants to DNA damage by allowing trans-lesion synthesis to take place. Taken together, the data indicate that the Elg1–RLC complex plays an important role in the maintenance of genomic stability by unloading PCNA from the chromatin.
The extracellular Contractile Injection System (eCIS) is a toxin-delivery particle that evolved from a bacteriophage tail. Four eCISs have previously been shown to mediate interactions between bacteria and their invertebrate hosts. Here, we identify eCIS loci in 1,249 bacterial and archaeal genomes and reveal an enrichment of these loci in environmental microbes and their apparent absence from mammalian pathogens. We show that 13 eCIS-associated toxin genes from diverse microbes can inhibit the growth of bacteria and/or yeast. We identify immunity genes that protect bacteria from self-intoxication, further supporting an antibacterial role for some eCISs. We also identify previously undescribed eCIS core genes, including a conserved eCIS transcriptional regulator. Finally, we present our data through an extensive eCIS repository, termed eCIStem. Our findings support eCIS as a toxin-delivery system that is widespread among environmental prokaryotes and likely mediates antagonistic interactions with eukaryotes and other prokaryotes.
Ribonucleotide reductase (RNR) provides the precursors for the generation of dNTPs, which are required for DNA synthesis and repair. Here, we investigated the function of the major RNR subunits Rnr1 and Rnr3 in telomere elongation in budding yeast. We show that Rnr1 is essential for the sustained elongation of short telomeres by telomerase. In the absence of Rnr1, cells harbor very short, but functional, telomeres, which cannot become elongated by increased telomerase activity or by tethering of telomerase to telomeres. Furthermore, we demonstrate that Rnr1 function is critical to prevent an early onset of replicative senescence and premature survivor formation in telomerase-negative cells but dispensable for telomere elongation by Homology-Directed-Repair. Our results suggest that telomerase has a "basal activity" mode that is sufficient to compensate for the “end-replication-problem” and does not require the presence of Rnr1 and a different "sustained activity" mode necessary for the elongation of short telomeres, which requires an upregulation of dNTP levels and dGTP ratios specifically through Rnr1 function. By analyzing telomere length and dNTP levels in different mutants showing changes in RNR complex composition and activity we provide evidence that the Mec1ATR checkpoint protein promotes telomere elongation by increasing both dNTP levels and dGTP ratios through Rnr1 upregulation in a mechanism that cannot be replaced by its homolog Rnr3.
These authors contributed equally to this work.Keywords: ATM/Tel1, ATR/Mec1, DNA damage response, DNA repair, DNA replication, telomeres ELG1 is a conserved gene with important roles in the maintenance of genome stability. Elg1's activity prevents gross chromosomal rearrangements, maintains proper telomere length regulation, helps repairing DNA damage created by a number of genotoxins and participates in sister chromatid cohesion. Elg1 is evolutionarily conserved, and its Fanconi Anemia-related mammalian ortholog (also known as ATAD5) is embryonic lethal when lost in mice and acts as a tumor suppressor in mice and humans. Elg1 encodes a protein that forms an RFC-like complex that unloads the replicative clamp, PCNA, from DNA, mainly in its SUMOylated form. We have identified 2 different regions in yeast Elg1 that undergo phosphorylation. Phosphorylation of one of them, S112, is dependent on the ATR yeast ortholog, Mec1, and probably is a direct target of this kinase. We show that phosphorylation of Elg1 is important for its role at telomeres. Mutants unable to undergo phosphorylation suppress the DNA damage sensitivity of Drad5 mutants, defective for an error-free post-replicational bypass pathway. This indicates a role of phosphorylation in the regulation of DNA repair. Our results open the way to investigate the mechanisms by which the activity of Elg1 is regulated during DNA replication and in response to DNA damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.