3-Hydroxyanthranilate-3,4-dioxygenase (HAD) catalyzes the oxidative ring opening of 3-hydroxyanthranilate in the final enzymatic step of the biosynthetic pathway from tryptophan to quinolinate, the universal de novo precursor to the pyridine ring of nicotinamide adenine dinucleotide. The enzyme requires Fe2+ as a cofactor and is inactivated by 4-chloro-3-hydroxyanthranilate. HAD from Ralstonia metallidurans was crystallized, and the structure was determined at 1.9 A resolution. The structures of HAD complexed with the inhibitor 4-chloro-3-hydroxyanthranilic acid and either molecular oxygen or nitric oxide were determined at 2.0 A resolution, and the structure of HAD complexed with 3-hydroxyanthranilate was determined at 3.2 A resolution. HAD is a homodimer with a subunit topology that is characteristic of the cupin barrel fold. Each monomer contains two iron binding sites. The catalytic iron is buried deep inside the beta-barrel with His51, Glu57, and His95 serving as ligands. The other iron site forms an FeS4 center close to the solvent surface in which the sulfur atoms are provided by Cys125, Cys128, Cys162, and Cys165. The two iron sites are separated by 24 A. On the basis of the crystal structures of HAD, mutagenesis studies were carried out in order to elucidate the enzyme mechanism. In addition, a new mechanism for the enzyme inactivation by 4-chloro-3-hydroxyanthranilate is proposed.
Previous studies have demonstrated two different biosynthetic pathways to quinolinate, the universal de novo precursor to the pyridine ring of NAD. In prokaryotes, quinolinate is formed from aspartate and dihydroxyacetone phosphate; in eukaryotes, it is formed from tryptophan. It has been generally believed that the tryptophan to quinolinic acid biosynthetic pathway is unique to eukaryotes; however, this paper describes the use of comparative genome analysis to identify likely candidates for all five genes involved in the tryptophan to quinolinic acid pathway in several bacteria. Representative examples of each of these genes were overexpressed, and the predicted functions are confirmed in each case using unambiguous biochemical assays.
LmbB2 is a peroxygenase-like enzyme that hydroxylates L-tyrosine to L-3,4-dihydroxyphenylalanine (DOPA) in the presence of hydrogen peroxide. However, its heme cofactor is ligated by a proximal histidine, not cysteine. We show that LmbB2 can oxidize L-tyrosine analogs with ring-deactivated substituents such as 3-nitro-, fluoro-, chloro-, iodo-L-tyrosine. We also found that the 4-hydroxyl group of the substrate is essential for reacting with the heme-based oxidant and activating the aromatic C-H bond. The most interesting observation of this study was obtained with 3-fluoro-L-tyrosine as a substrate and mechanistic probe. The LmbB2-mediated catalytic reaction yielded two hydroxylated products with comparable populations, i.e., oxidative C-H bond cleavage at C5 to generate 3-fluoro-5-hydroxyl-L-tyrosine and oxygenation at C3 concomitant with a carbon-fluorine bond cleavage to yield DOPA and fluoride. An iron protein-mediated hydroxylation on both C-H and C-F bonds with multiple turnovers is unprecedented. Thus, this finding reveals a significant potential of biocatalysis in C-H/C-X bond (X = halogen) cleavage. Further 18O-labeling results suggest that the source of oxygen for hydroxylation is a peroxide, and that a commonly expected oxidation by a high-valent iron intermediate followed by hydrolysis is not supported for the C-F bond cleavage. Instead, the C-F bond cleavage is proposed to be initiated by a nucleophilic aromatic substitution mediated by the iron-hydroperoxo species. Based on the experimental results, two mechanisms are proposed to explain how LmbB2 hydroxylates the substrate and cleaves C-H/C-F bond. This study broadens the understanding of heme enzyme catalysis and sheds light on enzymatic applications in medicinal and environmental fields.
3-Hydroxyanthranilate-3,4-dioxygenase (HAD) is a non-heme Fe(II) dependent enzyme that catalyzes the oxidative ring-opening of 3-hydroxyanthranilate to 2-amino-3-carboxymuconic semialdehyde. The enzymatic product subsequently cyclizes to quinolinate, an intermediate in the biosynthesis of nicotinamide adenine dinucleotide. Quinolinate has also been implicated in important neurological disorders. Here, we describe the mechanism by which 4-chloro-3-hydroxyanthranilate inhibits the HAD catalyzed reaction. Using overexpressed and purified bacterial HAD, we demonstrate that 4-chloro-3-hydroxyanthranilate functions as a mechanism-based inactivating agent. The inactivation results in the consumption of 2 +/- 0.8 equiv of oxygen and the production of superoxide. EPR analysis of the inactivation reaction demonstrated that the inhibitor stimulated the oxidation of the active site Fe(II) to the catalytically inactive Fe(III) oxidation state. The inactivated enzyme can be reactivated by treatment with DTT and Fe(II). High resolution ESI-FTMS analysis of the inactivated enzyme demonstrated that the inhibitor did not form an adduct with the enzyme and that four conserved cysteines were oxidized to two disulfides (Cys125-Cys128 and Cys162-Cys165) during the inactivation reaction. These results are consistent with a mechanism in which the enzyme, complexed to the inhibitor and O2, generates superoxide which subsequently dissociates, leaving the inhibitor and the oxidized iron center at the active site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.