Abstract.Plants consumed by non-human primates represent potential drug sources for human disease management. In this study, we isolated kaempferol-3-O-rhamnoside as an active compound from the leaves of Schima wallichii Korth., a plant commonly consumed by non-human primates. Its anti-cancer activities, including its ability to induce apoptotic mechanisms, were investigated in MCF-7 breast cancer cells. Results showed that in MCF-7 cells, kaempferol-3-O-rhamnoside inhibits cell proliferation in a dose-dependent manner and promotes apoptosis via the activation of the caspase signaling cascade, which includes caspase-9, caspase-3 and PARP. Our results provide a basis for further exploration of kaempferol-3-O-rhamnoside as an active compound for potential anti-cancer therapeutics.
Background:The appropriate selection of empirical antibiotics based on the pattern of local antibiotic resistance can reduce the mortality rate and increase the rational use of antibiotics.Aims:We analyze the pattern of antibiotic use and the sensitivity patterns of antibiotics to support the rational use of antibiotics in patients with sepsis.Materials and Methods:A retrospective observational study was conducted in adult sepsis patient at one of Indonesian hospital during January-December 2011. Data were collected from the hospital medical record department. Descriptive analysis was used in the processing and interpretation of data.Results:A total of 76 patients were included as research subjects. Lung infection was the highest source of infection. In the 66.3% of clinical specimens that were culture positive for microbes, Klebsiella pneumoniae, Escherichia coli, Staphylococcus hominis were detected with the highest frequency. The six most frequently used antibiotics, levofloxacin, ceftazidime, ciprofloxacin, cefotaxime, ceftriaxone, and erythromycin, showed an average resistance above 50%.Conclusions:The high use of antibiotic with a high level resistance requires a policy to support its rational use. Local microbial pattern based on site infection and pattern of antibiotics sensitivity test can be used as supporting data to optimize appropriateness of empirical antibiotics therapy in sepsis patients.
IntroductionDiabetes mellitus is a chronic disease with a high prevalence world wide. This disease has also been reported to affect the quality of life (QOL) of the patient and their family due to its chronic nature and multi organ involvement. The aim of this study was to analyze the association between adherence to prescribed diabetes medication and diabetes-specific QOL in patients attending Secondary Health Care Facility in Bandung City, Indonesia.MethodsA cross-sectional survey was conducted in the Secondary Health Care Facility in Bandung City, Indonesia. Data were collected between February and April 2014 using consecutive sampling. Adherence was assessed using the eight-item Morisky Medication Adherence Scale while diabetes-specific-QOL was assessed using the Diabetes 39 instrument.ResultsThe results showed that among the patients, 49.4% exhibited low adherence, 29.7% exhibited medium adherence, and 20.9% exhibited high adherence to diabetes medication. Diabetes-specific QOL proved to be highly affected in the sexual functioning domain. Social-burden domain scores were better than overall QOL scores. There was a significant association between adherence and diabetes-specific QOL (p = 0.009) using The Kruskall-Wallis test of significance. The results of the post hoc Mann–Whitney tests (high vs medium adherence, p = 0.084; medium vs low adherence, p = 0.86; and high vs low adherence, p = 0.001) indicated that higher adherence to prescribed diabetes medication contributed to an improved QOL. Multiple regression analysis showed that the predictors of diabetes-specific QOL were adherence and patient income.ConclusionsAdherence to prescribed medication showed a positive effect on diabetes-specific QOL in patients. Patients with a high adherence to medication had an improved QOL. This result is important not only in developing intervention programs for patients but also in improving their QOL through sustainable health promotion.
Actively proliferating cancer cells require sufficient amount of NADH and NADPH for biogenesis and to protect cells from the detrimental effect of reactive oxygen species. As both normal and cancer cells share the same NAD biosynthetic and metabolic pathways, selectively lowering levels of NAD(H) and NADPH would be a promising strategy for cancer treatment. Targeting nicotinamide phosphoribosyltransferase (NAMPT), a rate limiting enzyme of the NAD salvage pathway, affects the NAD and NADPH pool. Similarly, lowering NADPH by mutant isocitrate dehydrogenase 1/2 (IDH1/2) which produces D-2-hydroxyglutarate (D-2HG), an oncometabolite that downregulates nicotinate phosphoribosyltransferase (NAPRT) via hypermethylation on the promoter region, results in epigenetic regulation. NADPH is used to generate D-2HG, and is also needed to protect dihydrofolate reductase, the target for methotrexate, from degradation. NAD and NADPH pools in various cancer types are regulated by several metabolic enzymes, including methylenetetrahydrofolate dehydrogenase, serine hydroxymethyltransferase, and aldehyde dehydrogenase. Thus, targeting NAD and NADPH synthesis under special circumstances is a novel approach to treat some cancers. This article provides the rationale for targeting the key enzymes that maintain the NAD/NADPH pool, and reviews preclinical studies of targeting these enzymes in cancers.
Abstract.Prostate cancer has become a leading cause of mortality in humans. Previous studies have shown the potential anticancer properties of kaempferol-3-O-rhamnoside in breast cancer cell lines. In the present study, the anticancer potential of kaempferol-3-O-rhamnoside was investigated in LNCaP human prostate cancer cell lines. The inhibition of cell proliferation was investigated using MTT assays, whereas its ability to induce the caspase-cascade pathway was investigated by western blotting. The results showed that kaempferol-3-O-rhamnoside inhibits the proliferation of LNCaP cells in a dose-dependent manner by upregulating the expression of caspase-8, caspase-9, caspase-3 and poly (ADP-ribose) polymerase proteins. Although further studies are required, the results of the present study indicate the potential application of kaempferol-3-O-rhamnoside in cancer treatment. IntroductionCancer has become a significant disease for humans. In the USA alone, there were ~1.6 million new cases and 577,190 predicted mortalities in 2012. Among all types of cancer, prostate cancer is one of the top causes of male cancer fatalities worldwide (1). It is predicted that 233,000 new cases of prostate cancer will occur in America during 2014 (2).Several treatments are available for treatment of prostate cancer, by overcoming the aggressive tumor. These include surgery, radiation, radioactive implants and hormonal therapy. However, the treatment often impacts the quality of life due to side-effects or complications (3). Thus, numerous investigators have focused on discovering novel drugs or treatments. Among all the agents tested, natural products derived from medicinal plants are among the most favorable.In our previous study, kaempferol-3-O-rhamnoside, the major compound found in the ethyl acetate fractions of the Schima wallichii (S. wallichii) Korth. leaves, was isolated and its properties were investigated against breast cancer cell lines. The results indicated that kaempferol-3-O-rhamnoside was favorable for further exploration of its anticancer therapeutic potential (4). Therefore, in the present study the anticancer properties and mechanism of kaempferol-3-O-rhamnoside were investigated in prostate cancer cell lines. Materials and methodsPlant materials. S. wallichii Korth. leaves were collected from Lembang, West Java, Indonesia. The plant species was identified at the Department of Biology, Faculty of Mathematics and Natural Sciences, University of Padjadjaran (West Java, Indonesia).Extraction and isolation. The S. wallichii leaves were dried and extracted with 70% ethanol at room temperature three times for 24 h each. A concentrated extract was obtained in vacuo at 50˚C. The ethanol extract was partitioned into n-hexane, ethyl acetate and aqueous phases. Column chromatography on a Wakogel C 200 (Wako Pure Chemical Industries, Ltd., Osaka, Japan) column was performed to the ethyl acetate fraction, as it was previously reported as the most active fraction against cancer cell lines, using a mixture of n-hexane, ethyl ac...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.