Spatial normalization of brains to a standardized space is a widely used approach for group studies in functional magnetic resonance imaging (fMRI) data. Commonly used templatebased approaches are complicated by signal dropout and distortions in echo planar imaging (EPI) data. The most widely used software packages implement two common template-based strategies:(1) affine transformation of the EPI data to an EPI template followed by nonlinear registration to an EPI template (EPInorm) and (2) affine transformation of the EPI data to the anatomic image for a given subject, followed by nonlinear registration of the anatomic data to an anatomic template, which produces a transformation that is applied to the EPI data (T1norm). EPI distortion correction can be used to adjust for geometric distortion of EPI relative to the T1 images. However, in practice, this EPI distortion correction step is often skipped. We compare these template-based strategies empirically in four large datasets. We find that the EPInorm approach consistently shows reduced variability across subjects, especially in the case when distortion correction is not applied. EPInorm also shows lower estimates for coregistration distances among subjects (i.e., within-dataset similarity is higher). Finally, the EPInorm approach shows higher T values in a task-based dataset. Thus, the EPInorm approach appears to amplify the power of the sample compared to the T1norm approach when not using distortion correction (i.e., the EPInorm boosts the effective sample size by 12-25%). In sum, these results argue for the use of EPInorm over the T1norm when no distortion correction is used. Hum Brain Mapp 38:5331-5342, 2017.
ObjectiveThis study investigated whether frontal lobe cortical morphology differs for boys and girls with ADHD (ages 8–12 years) in comparison to typically developing (TD) peers.MethodParticipants included 226 children between the ages of 8–12 including 93 children with ADHD (29 girls) and 133 TD children (42 girls) for which 3T MPRAGE MRI scans were obtained. A fully automated frontal lobe atlas was used to generate functionally distinct frontal subdivisions, with surface area (SA) and cortical thickness (CT) assessed in each region. Analyses focused on overall diagnostic differences as well as examinations of the effect of diagnosis within boys and girls.ResultsGirls, but not boys, with ADHD showed overall reductions in total prefrontal cortex (PFC) SA. Localization revealed that girls showed widely distributed reductions in the bilateral dorsolateral PFC, left inferior lateral PFC, right medial PFC, right orbitofrontal cortex, and left anterior cingulate; and boys showed reduced SA only in the right anterior cingulate and left medial PFC. In contrast, boys, but not girls, with ADHD showed overall reductions in total premotor cortex (PMC) SA. Further localization revealed that in boys, premotor reductions were observed in bilateral lateral PMC regions; and in girls reductions were observed in bilateral supplementary motor complex. In line with diagnostic group differences, PMC and PFC SAs were inversely correlated with symptom severity in both girls and boys with ADHD.ConclusionsThese results elucidate sex-based differences in cortical morphology of functional subdivisions of the frontal lobe and provide additional evidence of associations among SA and symptom severity in children with ADHD.
The aim of this study was to examine delay discounting in girls and boys with ADHD-Combined type (ADHD-C) relative to typically developing (TD) children on two tasks that differ in the extent to which the rewards and delays were experienced by participants. Children ages 8–12 years with ADHD-C (n = 65; 19 girls) and TD controls (n = 55; 15 girls) completed two delay discounting tasks involving a series of choices between smaller, immediate and larger, delayed rewards. The classic delay discounting task involved choices about money at delays of 1–90 days and only some of the outcomes were actually experienced by the participants. The novel real-time discounting task involved choices about an immediately consumable reward (playing a preferred game) at delays of 25–100 s, all of which were actually experienced by participants. Participants also provided subjective ratings of how much they liked playing the game and waiting to play. Girls with ADHD-C displayed greater delay discounting compared to boys with ADHD-C and TD girls and boys on the real-time discounting task. Diagnostic group differences were not evident on the classic discounting task. In addition, children with ADHD-C reported wanting to play the game more and liking waiting to play the game less than TD children. This novel demonstration of greater delay discounting among girls with ADHD-C on a discounting task in which the rewards are immediately consumable and the delays are experienced in real-time informs our understanding of sex differences and motivational processes in children with ADHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.