The insula and cingulate cortices are implicated in emotional, homeostatic/allostatic, sensorimotor, and cognitive functions. Non-human primates have specific anatomical connections between sub-divisions of the insula and cingulate. Specifically, the anterior insula projects to the pregenual anterior cingulate cortex (pACC) and the anterior and posterior mid-cingulate cortex (aMCC and pMCC); the mid-posterior insula only projects to the posterior MCC (pMCC). In humans, functional neuroimaging studies implicate the anterior insula and pre/subgenual ACC in emotional processes, the mid-posterior insula with awareness and interoception, and the MCC with environmental monitoring, response selection, and skeletomotor body orientation. Here, we tested the hypothesis that distinct resting state functional connectivity could be identified between (1) the anterior insula and pACC/aMCC; and (2) the entire insula (anterior, middle, and posterior insula) and the pMCC. Functional connectivity was assessed from resting state fMRI scans in 19 healthy volunteers using seed regions of interest in the anterior, middle, and posterior insula. Highly correlated, low-frequency oscillations (< 0.05 Hz) were identified between specific insula and cingulate subdivisions. The anterior insula was shown to be functionally connected with the pACC/aMCC and the pMCC, while the mid/posterior insula was only connected with the pMCC. These data provide evidence for a resting state anterior insula-pACC/aMCC cingulate system that may integrate interoceptive information with emotional salience to form a subjective representation of the body; and another system that includes the entire insula and MCC, likely involved in environmental monitoring, response selection, and skeletomotor body orientation.
The cortical mechanisms and substrates of cognitive and emotional demands are poorly understood. Lesion studies and functional imaging implicate the anterior cingulate cortex (ACC). The caudal ACC (cACC) has been implicated in cognitive processes such as attention, salience, interference, and response competition, mostly on the basis of neuroimaging results. To test the hypothesis that individual cACC neurons subserve these functions, we monitored neuronal activity from single cells in the cACC while subjects were engaged in a mental arithmetic task, the cognitively demanding counting Stroop task, and/or the emotional Stroop interference task. We now report the first direct measures of single neurons in humans identifying a population of cACC neurons that respond differentially or in a graded manner to cognitively demanding high-and low-conflict Stroop tasks, including those with emotional valence. These data indicate that cACC neurons may be acting as salience detectors when faced with conflict and difficult or emotional stimuli, consistent with neuroimaging results of cACC responses to abrupt sensory, novel, task-relevant, or painful stimuli.
Variability in human behavior related to sex is supported by neuroimaging studies showing differences in brain activation patterns during cognitive task performance. An emerging field is examining the human connectome, including networks of brain regions that are not only temporally-correlated during different task conditions, but also networks that show highly correlated spontaneous activity during a task-free state. Both task-related and task-free network activity has been associated with individual task performance and behavior under certain conditions. Therefore, our aim was to determine whether sex differences exist during a task-free resting state for two networks associated with cognitive task performance (executive control network (ECN), salience network (SN)) and the default mode network (DMN). Forty-nine healthy subjects (26 females, 23 males) underwent a 5-min task-free fMRI scan in a 3T MRI. An independent components analysis (ICA) was performed to identify the best-fit IC for each network based on specific spatial nodes defined in previous studies. To determine the consistency of these networks across subjects we performed self-organizing group-level ICA analyses. There were no significant differences between sexes in the functional connectivity of the brain areas within the ECN, SN, or the DMN. These important findings highlight the robustness of intrinsic connectivity of these resting state networks and their similarity between sexes. Furthermore, our findings suggest that resting state fMRI studies do not need to be controlled for sex.
Following upper limb peripheral nerve transection and surgical repair, some patients regain good sensorimotor function while others do not. Understanding peripheral and central mechanisms that contribute to recovery may facilitate the development of new therapeutic interventions. Plasticity following peripheral nerve transection has been demonstrated throughout the neuroaxis in animal models of nerve injury. However, the brain changes that occur following peripheral nerve transection and surgical repair in humans have not been examined. Furthermore, the extent to which peripheral nerve regeneration influences functional and structural brain changes has not been characterized. Therefore, we asked whether functional changes are accompanied by grey and/or white matter structural changes and whether these changes relate to sensory recovery? To address these key issues we (i) assessed peripheral nerve regeneration; (ii) measured functional magnetic resonance imaging brain activation (blood oxygen level dependent signal; BOLD) in response to a vibrotactile stimulus; (iii) examined grey and white matter structural brain plasticity; and (iv) correlated sensory recovery measures with grey matter changes in peripheral nerve transection and surgical repair patients. Compared to each patient's healthy contralesional nerve, transected nerves have impaired nerve conduction 1.5 years after transection and repair, conducting with decreased amplitude and increased latency. Compared to healthy controls, peripheral nerve transection and surgical repair patients had altered blood oxygen level dependent signal activity in the contralesional primary and secondary somatosensory cortices, and in a set of brain areas known as the 'task positive network'. In addition, grey matter reductions were identified in several brain areas, including the contralesional primary and secondary somatosensory cortices, in the same areas where blood oxygen level dependent signal reductions were identified. Furthermore, grey matter thinning in the post-central gyrus was negatively correlated with measures of sensory recovery (mechanical and vibration detection) demonstrating a clear link between function and structure. Finally, we identified reduced white matter fractional anisotropy in the right insula in a region that also demonstrated reduced grey matter. These results provide insight into brain plasticity and structure-function-behavioural relationships following nerve injury and have important therapeutic implications.
Obstructive apnea during sleep elevates the set point for efferent sympathetic outflow during wakefulness. Such resetting is attributed to hypoxia-induced upregulation of peripheral chemoreceptor and brain stem sympathetic function. Whether recurrent arousal from sleep also influences daytime muscle sympathetic nerve activity is unknown. We therefore tested, in a cohort of 48 primarily nonsleepy, middle-aged, male (30) and female (18) volunteers (age: 59±1 years, mean±SE), the hypothesis that the frequency of arousals from sleep (arousal index) would relate to daytime muscle sympathetic burst incidence, independently of the frequency of apnea or its severity. Polysomnography identified 24 as having either no or mild obstructive sleep apnea (apnea–hypopnea index <15 events/h) and 24 with moderate-to-severe obstructive sleep apnea (apnea–hypopnea index >15 events/h). Burst incidence correlated significantly with arousal index ( r =0.53; P <0.001), minimum oxygen saturation ( r =−0.43; P =0.002), apnea–hypopnea index ( r =0.41; P =0.004), age ( r =0.36; P =0.013), and body mass index ( r =0.33; P =0.022) but not with oxygen desaturation index ( r =0.28; P =0.056). Arousal index was the single strongest predictor of muscle sympathetic nerve activity burst incidence, present in all best subsets regression models. The model with the highest adjusted R 2 (0.456) incorporated arousal index, minimum oxygen saturation, age, body mass index, and oxygen desaturation index but not apnea–hypopnea index. An apnea- and hypoxia-independent effect of sleep fragmentation on sympathetic discharge during wakefulness could contribute to intersubject variability, age-related increases in muscle sympathetic nerve activity, associations between sleep deprivation and insulin resistance or insomnia and future cardiovascular events, and residual adrenergic risk with persistence of hypertension should therapy eliminate obstructive apneas but not arousals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.